|
||||||||||
PREV LETTER NEXT LETTER | FRAMES NO FRAMES All Classes |
Parameter
s and ParameterSet
s and the parameter representation
in Galaxy.GalaxyAdaptor
from a given ParameterSet
containing all parameters
that are necessary for a program is shall be included in a Galaxy installation.
Result
for files that are results of some computation.GalaxyAdaptor.FileResult
with name, comment, and path to the file.
GalaxyAdaptor.FileResult
with name, comment, path to the file, filename and extension.
GalaxyAdaptor.FileResult
from its XML-representation
ImageResult
that is linked to a file that can be downloaded.ImageResult
with linked GalaxyAdaptor.FileResult
link
GalaxyAdaptor.LinkedImageResult
from its XML-representation
Parameter
s that can be converted to and extracted from
Galaxy representations.GaussianEmission
which can be used for maximum likelihood.
GaussianEmission
with normal-gamma prior by directly defining the hyper-parameters of the prior.
GaussianEmission
with normal-gamma prior by defining the expected precision and the expected standard deviation of the precision, i.e. via the
expectation and variance of the gamma part of the normal-gamma prior.
GaussianEmission
from its XML representation.
Storable
.
genBeta, disBeta,
and priorBeta
into an array and calls the main constructor.
Storable
.
GenDisMixClassifier
.Storable
.
GenDisMixClassifierParameterSet
.
GenDisMixClassifierParameterSet
.
n
with entries 1/n
.
number
of array entries to
1/number
.
n
-dimensional random array.
n
-dimensional random array as part of the array
d
beginning at start
.
number
with one entry getting
the value 1-epsilon
and all the others equal parts of
epsilon
.
number
as part of the array
d
beginning at index start
with one entry
getting the value 1-epsilon
and all the others equal parts
of epsilon
.
d
beginning at start
with n
logarithmic values.
Storable
.
GenericComplementableDiscreteAlphabet
from a parameter set.
GenericComplementableDiscreteAlphabet
.GenericComplementableDiscreteAlphabet
.
Storable
.
AnnotatedEntity
at index index
in the list.
AnnotatedEntity
with name name
in the list.
index
.
index
.
k
-mers
in the data
.
k
-mers
in the data
.
StringBuffer
containing additional
information for the XML representation.
String
with index index
.
s1
and s2
(Alignment.Alignment(AlignmentType, Costs)
).
s1
and s2
(Alignment.Alignment(AlignmentType, Costs)
).
Sequence
s containing all elements of this
DataSet
.
PhyloNode
s that are leafs in the subtree starting from this instance
PhyloNode
s that represent the leafs of the tree
Parameter
s in this ParameterSet
.
Alphabet
of position pos
.
AlphabetContainer
of this DataSet
.
AlphabetContainer
, used in this
Sequence
.
AlphabetContainer
of the current instance.
AlphabetContainer
of the
StructureLearner
.
AlphabetContainer
of this emission.
Alphabet
that is used for the given position.
Alphabet
of position
pos
.
Collection
of parameters containing informations about
this ClassifierAssessmentAssessParameterSet
.
DataSet
s.
DataSet
.
Sequence
.
ListResult
.
SequenceAnnotation
as
given in the constructor.
SequenceAnnotation
[] for each dimension of this multidimensional sequence.
SequenceAnnotation
types and the corresponding
identifier which occur in this DataSet
.
Sequence
s in this DataSet
.
k
nodes from the (encoded) set par
to the node
child
.
DataSet
containing the predicted binding sites.
DataSet
containing the predicted binding sites.
boolean
which is the value of the
Parameter
par
.
byte
which is the value of the Parameter
par
.
PhyloNode
s that are children of this instance
Result
s of dimension
AbstractClassifier.getNumberOfClasses()
that contains information about the
classifier and for each class.
GenDisMixClassifier
, where the parameters
are set to those that yielded the maximum value of the objective functions among all sampled
parameter values.
GenDisMixClassifier
, where the parameters
are set to the mean values over all sampled
parameter values in the stationary phase.
Storable
corresponding to
the XML representation stored in this StorableResult
.
index
.
AbstractScoreBasedClassifier
.
fgStats
and
bgStats
counted on sequences with a total weight of
n
.
fgStats
and
bgStats
counted on sequences with a total weight of
nFg
and nBg
, respectively.
sym
of the Alphabet
of position pos
of this AlphabetContainer
.
SelectionParameter
that can be used to create
an instance of PerformanceMeasureParameterSet
or NumericalPerformanceMeasureParameterSet
.
EnumParameter
that allows the user to choose
between different scales.
AnnotatedEntity
.
ParameterSet
.
motifLength
so that each String is contained in all
sequences of the sample respectively in the sample and the reverse
complementary sample.
code
.
AlphabetContainer
of Alphabet
s e.g. for
composite motifs/sequences.
Sequence
s of all
elements in the current DataSet
.
DataSet
of
Sequence.CompositeSequence
s.
Sequence.CompositeSequence
for
sequences with a simple AlphabetContainer
.
Sequence
s.
String
representation of the context.
index
.
s1(i)
and
s2(j)
.
index
.
SequenceAnnotation
.
ParameterSet
of the classifier.
InstanceParameterSet
that has been used to
instantiate the current instance of the implementing class.
double
array of dimension
DifferentiableSequenceScore.getNumberOfParameters()
containing the current parameter values.
SequenceAnnotation
or null
if no SequenceAnnotation
is available.
OptimizableFunction
.
DataSet
, where each Sequence
occurs only
once.
DataSet
containing ArbitraryFloatSequence
s using
a file name.
DataSet
containing ArbitraryFloatSequence
s using
a file name.
DataSet
containing ArbitraryFloatSequence
s.
DataSet
containing SparseSequence
s using
a file name.
DataSet
containing SparseSequence
s using
a file name.
DataSet
containing SparseSequence
s.
DataSet
by converting each Sequence
in original
to the DinucleotideProperty
property
.
DataSet
by converting each Sequence
in original
to the DinucleotideProperty
property
using the DinucleotideProperty.Smoothing
smoothing.
DataSet
by converting each Sequence
in original
to the DinucleotideProperty
s properties
and setting these as ReferenceSequenceAnnotation
of each original sequence.
DataSet
by converting each Sequence
in original
to the DinucleotideProperty
s properties
and adding or setting these as ReferenceSequenceAnnotation
of each original sequence.
DataSet.PartitionMethod
defining how the mutually exclusive
random-splits of user supplied data are generated.
DataSet.PartitionMethod
defining how the mutually exclusive
random-splits of user supplied data are generated.
DataSet.PartitionMethod
defining how the mutually exclusive
random-splits of user supplied data are generated.
AnnotatedEntity
.
true
if the temporary parameter files shall
be deleted on exit of the program.
index
i
.
DifferentiableSequenceScore
with index
i
.
DifferentiableSequenceScore
s in the internal
order.
DifferentiableStatisticalModel
s.
Function
.
DinucleotideProperty
as a two-dimensional double
array, where the rows correspond to the first nucleotide
and the columns correspond to the second nucleotide in the dinucleotide in order A, C, G, and T.
double
which is the value of the
Parameter
par
.
fgStats
and
bgStats
counted on sequences with a total weight of
nFg
and nBg
, respectively.
fgStats
and
bgStats
counted on sequences with a total weight of
nFg
and nBg
, respectively.
String
number idx
that has been extracted.
Sequence
, with index
i
.
Sequence
with index index
.
ClassifierAssessmentAssessParameterSet
.
Sequence
s, in this
DataSet
.
String
representation of this instance in the method Sequence.toString(String, int, int)
.
LocatedSequenceAnnotationWithLength
, i.e.
null
if no range was specified.
Constraint
as exact as
possible.
null
if the constraint was fulfilled by the last checked
value.
ParameterValidator.checkValue(Object)
returned false.
StructureLearner
.
ClassifierAssessmentAssessParameterSet
.
index
: Math.exp(BNDiffSMParameter.getValue()
)
, which is pre-computed.
QuadraticFunction
.
AbstractHMM.fillLogStatePosteriorMatrix(double[][], int, int, Sequence, boolean)
is used with code>silentZero==true
to eliminate the first row.
BNDiffSMParameterTree
in the topological ordering of the network
structure of the enclosing BayesianNetworkDiffSM
.
float
which is the value of the
Parameter
par
.
true
if only free parameters shall be used
index
.
Sequence
seq
beginning at position
start
.
DifferentiableStatisticalModel
.
DifferentiableSequenceScore
.
StringBuffer
.
AbstractBurnInTest
.
StringBuffer
.
length
.
motif
used in
component
.
String
representation of the structure that
can be used in Graphviz to create an image.
String
representation of the node options that
can be used in Graphviz to create the node for this state.
String
representation of the structure that
can be used in Graphviz to create an image.
String
representation of the structure that
can be used in Graphviz to create an image.
String
representation of the structure that
can be used in Graphviz to create an image.
String
representation of the structure that
can be used in Graphviz to create an image.
Sequence
and seq
.
HashMap
that can be used in
AbstractHMM.getGraphvizRepresentation(java.text.NumberFormat, de.jstacs.data.DataSet, double[], HashMap)
to create a Graphviz representation of the AbstractHMM
i
of the hyperparameter vector
of the underlying Dirichlet distribution.
i
of the hyperparameter vector
of the underlying Erlang distribution.
index
.
SequenceAnnotation
as given in the
constructor.
NullProgressUpdater
that is
immutable.
sortedScores
for the index
i
so that
sortedScores[i-1] < myScore <= sortedScores[i]
.
sortedScores
beginning at
start
for the index i
so that
sortedScores[i-1] < myScore <= sortedScores[i]
.
String
) for your
choice.
combi
.
pos - 1
to pos
in sequences seq
.
pos - 1
to pos
in sequences seq
.
Sequence
s to specific Alphabet
s.
sequence
.
Sequence
.
i
of the component with
P(i|s) maximal.
getIndices() -
Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
This method returns a deep copy of the internally used indices of the DifferentiableSequenceScore
for the parts.
getIndices(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
This array is used to compute the relative indices of a parameter index.
getInfixDataSet(int, int) -
Method in class de.jstacs.data.DataSet
This method enables you to use only an infix of all elements, i.e. the
Sequence
s, in the current DataSet
.
getInfos() -
Method in class de.jstacs.results.MeanResultSet
Returns some information for this MeanResultSet
.
getInitialClassParam(double) -
Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getInitialClassParam(double) -
Method in interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore
Returns the initial class parameter for the class this
DifferentiableSequenceScore
is responsible for, based on the class
probability classProb
.
getInitialClassParam(double) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
getInitialClassParam(double) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getInstance(SequenceAnnotation[], Sequence...) -
Method in class de.jstacs.data.sequences.MultiDimensionalArbitrarySequence
getInstance(SequenceAnnotation[], Sequence...) -
Method in class de.jstacs.data.sequences.MultiDimensionalDiscreteSequence
getInstance(SequenceAnnotation[], Sequence...) -
Method in class de.jstacs.data.sequences.MultiDimensionalSequence
getInstance() -
Method in class de.jstacs.parameters.InstanceParameterSet
Returns a new instance of the class of InstanceParameterSet.getInstanceClass()
that
was created using this ParameterSet
.
getInstanceClass() -
Method in class de.jstacs.parameters.InstanceParameterSet
Returns the class of the instances that can be constructed using this
set.
getInstanceComment() -
Method in class de.jstacs.algorithms.optimization.termination.AbsoluteValueCondition.AbsoluteValueConditionParameterSet
Deprecated.
getInstanceComment() -
Method in class de.jstacs.algorithms.optimization.termination.CombinedCondition.CombinedConditionParameterSet
getInstanceComment() -
Method in class de.jstacs.algorithms.optimization.termination.IterationCondition.IterationConditionParameterSet
getInstanceComment() -
Method in class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet
getInstanceComment() -
Method in class de.jstacs.algorithms.optimization.termination.SmallGradientConditon.SmallGradientConditonParameterSet
getInstanceComment() -
Method in class de.jstacs.algorithms.optimization.termination.SmallStepCondition.SmallStepConditionParameterSet
getInstanceComment() -
Method in class de.jstacs.algorithms.optimization.termination.TimeCondition.TimeConditionParameterSet
getInstanceComment() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifierParameterSet
getInstanceComment() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifierParameterSet
getInstanceComment() -
Method in class de.jstacs.data.AlphabetContainerParameterSet.AlphabetArrayParameterSet
Returns a descriptive comment on this
AlphabetContainerParameterSet.AlphabetArrayParameterSet
.
getInstanceComment() -
Method in class de.jstacs.data.AlphabetContainerParameterSet
getInstanceComment() -
Method in class de.jstacs.data.AlphabetContainerParameterSet.SectionDefinedAlphabetParameterSet
Returns a descriptive comment on this
AlphabetContainerParameterSet.SectionDefinedAlphabetParameterSet
.
getInstanceComment() -
Method in class de.jstacs.data.alphabets.ContinuousAlphabet.ContinuousAlphabetParameterSet
getInstanceComment() -
Method in class de.jstacs.data.alphabets.DiscreteAlphabet.DiscreteAlphabetParameterSet
getInstanceComment() -
Method in class de.jstacs.data.alphabets.DNAAlphabet.DNAAlphabetParameterSet
getInstanceComment() -
Method in class de.jstacs.data.alphabets.DNAAlphabetContainer.DNAAlphabetContainerParameterSet
getInstanceComment() -
Method in class de.jstacs.data.alphabets.ProteinAlphabet.ProteinAlphabetParameterSet
getInstanceComment() -
Method in class de.jstacs.parameters.InstanceParameterSet
Returns a comment (a textual description) of the class that can be
constructed using this ParameterSet
.
getInstanceComment() -
Method in class de.jstacs.sampling.VarianceRatioBurnInTestParameterSet
getInstanceComment() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSMParameterSet
getInstanceComment() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTExplainingAwayResidual.BTExplainingAwayResidualParameterSet
getInstanceComment() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTMutualInformation.BTMutualInformationParameterSet
getInstanceComment() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.InhomogeneousMarkov.InhomogeneousMarkovParameterSet
getInstanceComment() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMExplainingAwayResidual.PMMExplainingAwayResidualParameterSet
getInstanceComment() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMMutualInformation.PMMMutualInformationParameterSet
getInstanceComment() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.parameters.HomMMParameterSet
getInstanceComment() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters.BayesianNetworkTrainSMParameterSet
getInstanceComment() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters.FSDAGTrainSMParameterSet
getInstanceFromParameterSet(InstanceParameterSet<T>) -
Static method in class de.jstacs.io.ParameterSetParser
Returns an instance of a subclass of InstantiableFromParameterSet
that can be instantiated by the InstanceParameterSet
pars
.
getInstanceFromParameterSet(ParameterSet, Class<T>) -
Static method in class de.jstacs.io.ParameterSetParser
Returns an instance of a subclass of InstantiableFromParameterSet
that can be instantiated by the ParameterSet
pars
.
getInstanceName() -
Method in class de.jstacs.algorithms.optimization.termination.AbsoluteValueCondition.AbsoluteValueConditionParameterSet
Deprecated.
getInstanceName() -
Method in class de.jstacs.algorithms.optimization.termination.CombinedCondition.CombinedConditionParameterSet
getInstanceName() -
Method in class de.jstacs.algorithms.optimization.termination.IterationCondition.IterationConditionParameterSet
getInstanceName() -
Method in class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet
getInstanceName() -
Method in class de.jstacs.algorithms.optimization.termination.SmallGradientConditon.SmallGradientConditonParameterSet
getInstanceName() -
Method in class de.jstacs.algorithms.optimization.termination.SmallStepCondition.SmallStepConditionParameterSet
getInstanceName() -
Method in class de.jstacs.algorithms.optimization.termination.TimeCondition.TimeConditionParameterSet
getInstanceName() -
Method in class de.jstacs.classifiers.AbstractClassifier
Returns a short description of the classifier.
getInstanceName() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
getInstanceName() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.CompositeLogPrior
getInstanceName() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.DoesNothingLogPrior
getInstanceName() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.LogPrior
Returns a short instance name.
getInstanceName() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateGaussianLogPrior
getInstanceName() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateLaplaceLogPrior
getInstanceName() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SimpleGaussianSumLogPrior
getInstanceName() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.msp.MSPClassifier
getInstanceName() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifierParameterSet
getInstanceName() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
getInstanceName() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
getInstanceName() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifierParameterSet
getInstanceName() -
Method in class de.jstacs.classifiers.MappingClassifier
getInstanceName() -
Method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
getInstanceName() -
Method in class de.jstacs.data.AlphabetContainerParameterSet.AlphabetArrayParameterSet
Returns a descriptive name for this AlphabetContainerParameterSet.AlphabetArrayParameterSet
.
getInstanceName() -
Method in class de.jstacs.data.AlphabetContainerParameterSet
getInstanceName() -
Method in class de.jstacs.data.AlphabetContainerParameterSet.SectionDefinedAlphabetParameterSet
Returns a descriptive name for this
AlphabetContainerParameterSet.SectionDefinedAlphabetParameterSet
.
getInstanceName() -
Method in class de.jstacs.data.alphabets.Alphabet.AlphabetParameterSet
getInstanceName() -
Method in class de.jstacs.data.alphabets.DNAAlphabetContainer.DNAAlphabetContainerParameterSet
getInstanceName() -
Method in class de.jstacs.parameters.InstanceParameterSet
Returns the name of an instance of the class that can be constructed
using this ParameterSet
.
getInstanceName() -
Method in interface de.jstacs.sampling.BurnInTest
Returns a short description of the burn-in test.
getInstanceName() -
Method in class de.jstacs.sampling.SimpleBurnInTest
Deprecated.
getInstanceName() -
Method in class de.jstacs.sampling.VarianceRatioBurnInTest
getInstanceName() -
Method in class de.jstacs.sampling.VarianceRatioBurnInTestParameterSet
getInstanceName() -
Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
getInstanceName() -
Method in class de.jstacs.sequenceScores.differentiable.logistic.LogisticDiffSS
getInstanceName() -
Method in class de.jstacs.sequenceScores.differentiable.UniformDiffSS
getInstanceName() -
Method in interface de.jstacs.sequenceScores.SequenceScore
Should return a short instance name such as iMM(0), BN(2), ...
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSMParameterSet
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTExplainingAwayResidual.BTExplainingAwayResidualParameterSet
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTExplainingAwayResidual
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTMutualInformation.BTMutualInformationParameterSet
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTMutualInformation
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.InhomogeneousMarkov
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.InhomogeneousMarkov.InhomogeneousMarkovParameterSet
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Returns the name of the Measure
and possibly some additional
information about the current instance.
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMExplainingAwayResidual
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMExplainingAwayResidual.PMMExplainingAwayResidualParameterSet
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMMutualInformation
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMMutualInformation.PMMMutualInformationParameterSet
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.UniformDurationDiffSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MultiDimensionalSequenceWrapperDiffSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.DifferentiableStatisticalModelWrapperTrainSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DGTrainSMParameterSet
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousMM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.BayesianNetworkTrainSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGTrainSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureClassifier
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingPhyloHMM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.HiddenMotifMixture
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.GaussianLikePositionPrior
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.PositionPrior
Returns the instance name.
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.UniformPositionPrior
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.UniformTrainSM
getInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.VariableLengthWrapperTrainSM
getInstanceParameterSets() -
Method in enum de.jstacs.data.AlphabetContainer.AlphabetContainerType
This method returns a LinkedList
of
InstanceParameterSet
s which can be used to create
Alphabet
s that can be used in a AlphabetContainer
of
the given AlphabetContainer.AlphabetContainerType
.
getInstanceParameterSets(Class<T>, String) -
Static method in class de.jstacs.utils.SubclassFinder
This method returns a list of InstanceParameterSet
s that can be used to create a subclass of clazz
.
getInternalPosition(int[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
Copies the current value of the internal iterator in the given array.
getIntFromParameter(Parameter) -
Static method in class de.jstacs.io.ParameterSetParser
Returns the int
which is the value of the Parameter
par
.
getK() -
Method in class de.jstacs.classifiers.assessment.KFoldCrossValidationAssessParameterSet
Returns the number of mutually exclusive random-splits of user supplied
data defined by this KFoldCrossValidationAssessParameterSet
.
getKLDivergence(double[][][]) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
Returns the KL-divergence of the distribution of this BNDiffSMParameterTree
and the distribution given by
ds
.
getKLDivergence(double[], double[][][][]) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
Returns the KL-divergence of the distribution of this BNDiffSMParameterTree
and a number of distribution given by
ds
and weighted by weight
getKLDivergence(StatisticalModel, StatisticalModel, int) -
Static method in class de.jstacs.utils.StatisticalModelTester
Returns the Kullback-Leibler-divergence D(p_m1||p_m2)
.
getKmereSequenceStatistic(int, boolean, int, DataSet...) -
Static method in class de.jstacs.motifDiscovery.KMereStatistic
This method enables the user to get a statistic over all k
-mers
in the sequences.
getKmereSequenceStatistic(boolean, int, HashSet<Sequence>, DataSet...) -
Static method in class de.jstacs.motifDiscovery.KMereStatistic
This method enables the user to get a statistic for a set of k
-mers.
getLabel(String[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method returns a label for the state.
getLambda(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMConstraint
Returns the value of
.
getLastContextState(int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getLastContextState(int, int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
The method returns the index of the state of the context, if there is no context -1 is returned.
getLastScore() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
Returns the score that was computed in the last optimization of the
parameters.
getLegalName(String) -
Static method in class de.jstacs.utils.galaxy.GalaxyAdaptor
Returns a legal variable name in Galaxy
getLength() -
Method in class de.jstacs.algorithms.alignment.StringAlignment
This method return the length of the alignment.
getLength() -
Method in class de.jstacs.classifiers.AbstractClassifier
Returns the length of the sequences this classifier can handle or
0
for sequences of arbitrary length.
getLength() -
Method in class de.jstacs.data.sequences.annotation.LocatedSequenceAnnotationWithLength
Returns the length of this LocatedSequenceAnnotationWithLength
as
given in the constructor.
getLength() -
Method in class de.jstacs.data.sequences.ArbitraryFloatSequence
getLength() -
Method in class de.jstacs.data.sequences.ArbitrarySequence
getLength() -
Method in class de.jstacs.data.sequences.ByteSequence
getLength() -
Method in class de.jstacs.data.sequences.IntSequence
getLength() -
Method in class de.jstacs.data.sequences.MappedDiscreteSequence
getLength() -
Method in class de.jstacs.data.sequences.MultiDimensionalSequence
getLength() -
Method in class de.jstacs.data.sequences.PermutedSequence
getLength() -
Method in class de.jstacs.data.sequences.Sequence.CompositeSequence
getLength() -
Method in class de.jstacs.data.sequences.Sequence
Returns the length of the Sequence
.
getLength() -
Method in class de.jstacs.data.sequences.Sequence.SubSequence
getLength() -
Method in class de.jstacs.data.sequences.ShortSequence
getLength() -
Method in class de.jstacs.data.sequences.SparseSequence
getLength() -
Method in class de.jstacs.parameters.SequenceScoringParameterSet
Returns the length of the sequences the model can work on.
getLength() -
Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getLength() -
Method in interface de.jstacs.sequenceScores.SequenceScore
Returns the length of sequences this instance can score.
getLength() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getLength() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.GaussianLikePositionPrior
getLength() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.PositionPrior
Returns the length that is supported by this prior.
getLength() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.UniformPositionPrior
getLengthArray(DifferentiableSequenceScore...) -
Static method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
This method provides an array of lengths that can be used for instance as IndependentProductDiffSS.partialLength
.
getLengthOfBurnIn() -
Method in class de.jstacs.sampling.AbstractBurnInTest
getLengthOfBurnIn() -
Method in interface de.jstacs.sampling.BurnInTest
Computes and returns the length of the burn-in phase using the values
from BurnInTest.setValue(double)
.
getLengthOfBurnIn() -
Method in class de.jstacs.sampling.SimpleBurnInTest
Deprecated.
getLengthOfModels() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
This method returns the length of the models in the
CompositeTrainSM
.
getLine(int) -
Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier.DoubleTableResult
Return the line with a given index
from the table.
getLineEps() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.NumericalHMMTrainingParameterSet
This method returns the threshold that should be used for stopping the line search during the optimization.
getLink() -
Method in class de.jstacs.utils.galaxy.GalaxyAdaptor.LinkedImageResult
Returns the linked file
getList() -
Method in class de.jstacs.parameters.RangeParameter
Returns a list of all parameter values as a String
or
null
if no parameter values have been set.
getLnFreq(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM.HomCondProb
Returns the logarithmic frequency at a given position
index
.
getLnFreq(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhCondProb
Returns the logarithm of the relative frequency (=probability) at
position index
in the distribution.
getLnFreq(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhCondProb
Returns the logarithm of the relative frequency (=probability) with the
position in the distribution given by the index of the specific
constraint that is fulfilled by the Sequence
s
beginning at start
.
getLogCDF(double) -
Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.CDFOfNormal
This method computes the logarithm of the cumulative density function of a standard normal distribution.
getLogGammaScoreForCurrentStatistic() -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SamplingState
This method calculates a score for the current statistics, which is independent from the current parameters
In general the gamma-score is a product of gamma-functions parameterized with the current statistics
getLogGammaScoreForCurrentStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleSamplingState
getLogGammaScoreFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getLogGammaScoreFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.PhyloDiscreteEmission
getLogGammaScoreFromStatistic() -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SamplingEmission
This method calculates a score for the current statistics, which is independent from the current parameters
In general the gamma-score is a product of gamma-functions parameterized with the current statistics
getLogGammaScoreFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getLogGammaScoreFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method calculates a score for the current statistics, which is independent from the current parameters
In general the gamma-score is a product of gamma-functions parameterized with the current statistics
getLogGammaScoreFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getLogGammaScoreFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ReferenceBasedTransitionElement
getLogGammaScoreFromStatistic() -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.TransitionWithSufficientStatistic
This method calculates a score for the current statistics, which is independent from the current parameters
In general the gamma-score is a product of gamma-functions parameterized with the current statistics
getLogGammaSum(Constraint, double) -
Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.ConstraintManager
Computes the sum of the differences between the logarithmic values of the
prior knowledge and all counts of a Constraint
c
.
getLogLikelihood(StatisticalModel, DataSet) -
Static method in class de.jstacs.utils.StatisticalModelTester
Returns the log-likelihood of a DataSet
data
for a
given model m
.
getLogLikelihood(StatisticalModel, DataSet, double[]) -
Static method in class de.jstacs.utils.StatisticalModelTester
Returns the log-likelihood of a DataSet
data
for a
given model m
.
getLogNormalizationConstant() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractVariableLengthDiffSM
getLogNormalizationConstant(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getLogNormalizationConstant() -
Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.DifferentiableStatisticalModel
Returns the logarithm of the sum of the scores over all sequences of the event space.
getLogNormalizationConstant() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getLogNormalizationConstant(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getLogNormalizationConstant(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getLogNormalizationConstant(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getLogNormalizationConstant() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getLogNormalizationConstant() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getLogNormalizationConstant() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getLogNormalizationConstant() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
getLogNormalizationConstant() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
getLogNormalizationConstant(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.VariableLengthMixtureDiffSM
getLogNormalizationConstant() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getLogNormalizationConstant() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getLogNormalizationConstant(int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.VariableLengthDiffSM
This method returns the logarithm of the normalization constant for a given sequence
length.
getLogNormalizationConstant() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getLogNormalizationConstantForComponent(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
Computes the logarithm of the normalization constant for the component i
.
getLogNormalizationConstantForComponent(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getLogNormalizationConstantForComponent(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getLogNormalizationConstantForComponent(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
getLogNumberOfPossibleOriginalSequences() -
Method in class de.jstacs.data.sequences.MappedDiscreteSequence
This method returns the logarithm of the number of original Sequence
s that yield the same mapped Sequence
.
getLogNumberOfPossibleOriginalSequences(int, int) -
Method in class de.jstacs.data.sequences.MappedDiscreteSequence
This method returns the logarithm of the number of original Sequence
s that yield the same mapped Sequence
.
getLogNumberOfSimilarSymbols(int) -
Method in class de.jstacs.data.alphabets.DiscreteAlphabetMapping
This method returns the logarithm of the number of old values that yield the same new value.
getLogPartialNormalizationConstant(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractVariableLengthDiffSM
getLogPartialNormalizationConstant(int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getLogPartialNormalizationConstant(int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.DifferentiableStatisticalModel
Returns the logarithm of the partial normalization constant for the parameter with index
parameterIndex
.
getLogPartialNormalizationConstant(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getLogPartialNormalizationConstant(int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getLogPartialNormalizationConstant(int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getLogPartialNormalizationConstant(int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getLogPartialNormalizationConstant(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getLogPartialNormalizationConstant(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getLogPartialNormalizationConstant(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getLogPartialNormalizationConstant(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getLogPartialNormalizationConstant(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
getLogPartialNormalizationConstant(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getLogPartialNormalizationConstant(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
getLogPartialNormalizationConstant(int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.VariableLengthMixtureDiffSM
getLogPartialNormalizationConstant(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getLogPartialNormalizationConstant(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getLogPartialNormalizationConstant(int, int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.VariableLengthDiffSM
This method returns the logarithm of the partial normalization constant for a given
parameter index and a sequence length.
getLogPartialNormalizationConstant(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getLogPartialNormalizer() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
Returns the partial derivative of the normalization constant with respect
to this parameter.
getLogPosteriorFromStatistic() -
Method in interface de.jstacs.sampling.SamplingFromStatistic
This method calculates the a-posteriori probability for the current statistics
getLogPosteriorFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
This method calculates the a posteriori probability for the current statistics
getLogPosteriorFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getLogPosteriorFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.PhyloDiscreteEmission
getLogPosteriorFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getLogPosteriorFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleSamplingState
getLogPosteriorFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.TransitionElement
This method computes the log posterior from the internal sufficient statistic.
getLogPosteriorFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
getLogPriorForPositions(int, int...) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.GaussianLikePositionPrior
Returns only the important part and leaving the logarithm of the
normalization constant out.
getLogPriorForPositions(int, int...) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.PositionPrior
The logarithmic value of the prior for specified start positions of the
part motifs.
getLogPriorForPositions(int, int...) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.UniformPositionPrior
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getLogPriorTerm() -
Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.DifferentiableStatisticalModel
This method computes a value that is proportional to
DifferentiableStatisticalModel.getESS()
* DifferentiableStatisticalModel.getLogNormalizationConstant()
+ Math.log( prior )
where prior
is the prior for the parameters of this model.
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.MarkovModelDiffSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.UniformDurationDiffSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getLogPriorTerm() -
Method in interface de.jstacs.sequenceScores.statisticalModels.StatisticalModel
Returns a value that is proportional to the log of the prior.
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.DifferentiableStatisticalModelWrapperTrainSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousMM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.BayesianNetworkTrainSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getLogPriorTerm() -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.Emission
Returns a value that is proportional to the log of the prior.
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.MixtureEmission
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
Returns a value that is proportional to the log of the prior.
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ReferenceBasedTransitionElement
getLogPriorTerm() -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
Returns a value that is proportional to the log of the prior.
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.UniformTrainSM
getLogPriorTerm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.VariableLengthWrapperTrainSM
getLogPriorTermForComponentProbs() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method computes the part of the prior that comes from the component
probabilities.
getLogProbAndPartialDerivationFor(boolean, int, int, IntList, DoubleList, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
getLogProbAndPartialDerivationFor(boolean, int, int, IntList, DoubleList, Sequence) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.DifferentiableEmission
Returns the logarithmic score for a Sequence
beginning at
position start
in the Sequence
and fills lists with
the indices and the partial derivations.
getLogProbAndPartialDerivationFor(boolean, int, int, IntList, DoubleList, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getLogProbAndPartialDerivationFor(boolean, int, int, IntList, DoubleList, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.PhyloDiscreteEmission
getLogProbAndPartialDerivationFor(boolean, int, int, IntList, DoubleList, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getLogProbAndPartialDerivationFor(boolean, int, int, IntList, DoubleList, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
getLogProbFor(Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
getLogProbFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
getLogProbFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
getLogProbFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getLogProbFor(Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getLogProbFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getLogProbFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getLogProbFor(Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getLogProbFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getLogProbFor(Sequence, int, int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.StatisticalModel
Returns the logarithm of the probability of (a part of) the given
sequence given the model.
getLogProbFor(Sequence, int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.StatisticalModel
Returns the logarithm of the probability of (a part of) the given
sequence given the model.
getLogProbFor(Sequence) -
Method in interface de.jstacs.sequenceScores.statisticalModels.StatisticalModel
Returns the logarithm of the probability of the given sequence given the
model.
getLogProbFor(Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getLogProbFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getLogProbFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
getLogProbFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.DifferentiableStatisticalModelWrapperTrainSM
getLogProbFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM
getLogProbFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM
getLogProbFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
getLogProbFor(boolean, int, int, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
getLogProbFor(boolean, int, int, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getLogProbFor(boolean, int, int, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.PhyloDiscreteEmission
getLogProbFor(boolean, int, int, Sequence) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.Emission
This method computes the logarithm of the likelihood.
getLogProbFor(boolean, int, int, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.MixtureEmission
getLogProbFor(boolean, int, int, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getLogProbFor(boolean, int, int, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
getLogProbFor(int, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Returns the logarithmic probability for the sequence and the given
component.
getLogProbFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
getLogProbFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.UniformTrainSM
getLogProbFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.VariableLengthWrapperTrainSM
getLogProbForPath(IntList, int, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
getLogProbForPath(IntList, int, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getLogProbForPath(IntList, int, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
getLogProbUsingCurrentParameterSetFor(int, Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Returns the logarithmic probability for the sequence and the given
component using the current parameter set.
getLogProbUsingCurrentParameterSetFor(int, Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.MixtureTrainSM
getLogProbUsingCurrentParameterSetFor(int, Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
getLogProbUsingCurrentParameterSetFor(int, Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
getLogProposalPosteriorFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.PhyloDiscreteEmission
Returns the log posterior of the proposal distribution for the current statistic
getLogScore(int...) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
getLogScore(int...) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
This method enables the user to get the log-score without using a sequence object.
getLogScore(int...) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
getLogScore(int...) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.UniformDurationDiffSM
getLogScoreAndPartialDerivation(Sequence, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getLogScoreAndPartialDerivation(Sequence, IntList, DoubleList) -
Method in interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore
Returns the logarithmic score for a Sequence
seq
and
fills lists with the indices and the partial derivations.
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) -
Method in interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore
Returns the logarithmic score for a Sequence
beginning at
position start
in the Sequence
and fills lists with
the indices and the partial derivations.
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) -
Method in interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore
Returns the logarithmic score for a Sequence
beginning at
position start
in the Sequence
and fills lists with
the indices and the partial derivations.
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.differentiable.logistic.LogisticDiffSS
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.differentiable.UniformDiffSS
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractVariableLengthDiffSM
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractVariableLengthDiffSM
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getLogScoreAndPartialDerivation(IntList, DoubleList, int...) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
getLogScoreAndPartialDerivation(IntList, DoubleList, int...) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
This method enables the user to get the log-score and the partial derivations without using a sequence object.
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
getLogScoreAndPartialDerivation(IntList, DoubleList, int...) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
getLogScoreAndPartialDerivation(IntList, DoubleList, int...) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.UniformDurationDiffSM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.VariableLengthMixtureDiffSM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MultiDimensionalSequenceWrapperDiffSM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) -
Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.VariableLengthDiffSM
getLogScoreAndPartialDerivation(Sequence, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getLogScoreAndPartialDerivation(int, int, IntList, DoubleList, Sequence) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.DifferentiableState
This method allows to compute the logarithm of the score and the gradient for the given subsequences.
getLogScoreAndPartialDerivation(int, int, IntList, DoubleList, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleDifferentiableState
getLogScoreAndPartialDerivation(int, int, int, IntList, DoubleList, Sequence, int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.DifferentiableTransition
This method allows to compute the logarithm of the score and the gradient for a specific transition.
getLogScoreAndPartialDerivation(int, IntList, DoubleList, Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.TransitionElement
Returns the logarithmic score and fills lists with
the indices and the partial derivations.
getLogScoreAndPartialDerivation(int, int, int, IntList, DoubleList, Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
getLogScoreAndPartialDerivationForInternal(IntList, DoubleList) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
This method enables the user to get the log-score and the partial derivations without using a sequence object by using the internal iterator.
getLogScoreFor(Sequence) -
Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getLogScoreFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getLogScoreFor(DataSet) -
Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getLogScoreFor(DataSet, double[]) -
Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getLogScoreFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
getLogScoreFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.differentiable.logistic.LogisticDiffSS
getLogScoreFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.differentiable.UniformDiffSS
getLogScoreFor(Sequence) -
Method in interface de.jstacs.sequenceScores.SequenceScore
Returns the logarithmic score for the Sequence
seq
.
getLogScoreFor(Sequence, int) -
Method in interface de.jstacs.sequenceScores.SequenceScore
Returns the logarithmic score for the Sequence
seq
beginning at position start
in the Sequence
.
getLogScoreFor(Sequence, int, int) -
Method in interface de.jstacs.sequenceScores.SequenceScore
Returns the logarithmic score for the Sequence
seq
beginning at position start
in the Sequence
.
getLogScoreFor(DataSet) -
Method in interface de.jstacs.sequenceScores.SequenceScore
This method computes the logarithm of the scores of all sequences
in the given sample.
getLogScoreFor(DataSet, double[]) -
Method in interface de.jstacs.sequenceScores.SequenceScore
This method computes and stores the logarithm of the scores for
any sequence in the sample in the given double
-array.
getLogScoreFor(DataSet) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
getLogScoreFor(DataSet, double[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
getLogScoreFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractVariableLengthDiffSM
getLogScoreFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractVariableLengthDiffSM
getLogScoreFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getLogScoreFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getLogScoreFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getLogScoreFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getLogScoreFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getLogScoreFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getLogScoreFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getLogScoreFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
getLogScoreFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getLogScoreFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
getLogScoreFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.VariableLengthMixtureDiffSM
getLogScoreFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MultiDimensionalSequenceWrapperDiffSM
getLogScoreFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getLogScoreFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getLogScoreFor(Sequence, int, int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.VariableLengthDiffSM
getLogScoreFor(Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getLogScoreFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getLogScoreFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getLogScoreFor(DataSet) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getLogScoreFor(DataSet, double[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getLogScoreFor(Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getLogScoreFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getLogScoreFor(Sequence, int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getLogScoreFor(DataSet) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getLogScoreFor(DataSet, double[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getLogScoreFor(int, int, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleState
getLogScoreFor(int, int, Sequence) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.State
This method returns the logarithm of the score for a given sequence with given start and end position.
getLogScoreFor(int, Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method returns the score for the transition from the current context to the state with index index
.
getLogScoreFor(int, int, int, Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getLogScoreFor(int, Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.DistanceBasedScaledTransitionElement
getLogScoreFor(int, Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ScaledTransitionElement
getLogScoreFor(int, int, int, Sequence, int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
This method returns the logarithm of the score for the transition.
getLogScoreFor(DataSet) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
getLogScoreForInternal() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
This method enables the user to get the log-score without using a sequence object by using the internal iterator.
getLogStatePosteriorMatrixFor(int, int, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns the log state posterior of all states for a sequence.
getLogStatePosteriorMatrixFor(DataSet) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns the log state posteriors for all sequences of the sample data
.
getLogStatePosteriorMatrixFor(int, int, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
getLogSum(double...) -
Static method in class de.jstacs.utils.Normalisation
Returns the logarithm of the sum of values val[i]
given as
lnVal[i] = Math.log( val[i] )
.
getLogSum(int, int, double...) -
Static method in class de.jstacs.utils.Normalisation
Returns the logarithm of the sum of values v[i]
given as
lnVal[i] = Math.log( val[i] )
between a start and end index.
getLogT() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
Returns the part of the normalization constant of parameters before this
parameter in the structure of the network.
getLogZ() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
Returns the part of the normalization constant of parameters after this
parameter in the structure of the network.
getLongFromParameter(Parameter) -
Static method in class de.jstacs.io.ParameterSetParser
Returns the long
which is the value of the Parameter
par
.
getLowerBound() -
Method in class de.jstacs.parameters.validation.NumberValidator
Returns the lower bound of the NumberValidator
.
getMarginalDistribution(StatisticalModel, int[]) -
Static method in class de.jstacs.utils.StatisticalModelTester
This method computes the marginal distribution for any discrete model
m
and all sequences that fulfill the constraint
, if possible.
getMarginalOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
Returns the marginal order, i.e. the number of used random variables.
getMax() -
Method in class de.jstacs.data.alphabets.ContinuousAlphabet
Returns the maximal value of this alphabet.
getMax() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
Returns the maximal value that can be scored.
getMax(double[][]) -
Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.TwoPointEvaluater
This method can be used to determine the maximal value of the matrix of
mutual informations.
getMaximalAlphabetLength() -
Method in class de.jstacs.data.AlphabetContainer
Returns the maximal Alphabet
length of this
AlphabetContainer
.
getMaximalEdgeFor(byte, int, int...) -
Method in class de.jstacs.algorithms.graphs.tensor.AsymmetricTensor
getMaximalEdgeFor(byte, int, int...) -
Method in class de.jstacs.algorithms.graphs.tensor.SubTensor
getMaximalEdgeFor(byte, int, int...) -
Method in class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
getMaximalEdgeFor(byte, int, int...) -
Method in class de.jstacs.algorithms.graphs.tensor.Tensor
Returns the edge
permute(parents[0],...
getMaximalElementLength() -
Method in class de.jstacs.data.DataSet
Returns the maximal length of an element, i.e. a Sequence
, in
this DataSet
.
getMaximalInDegree() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getMaximalInDegree() -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
This method returns the maximal out degree of any context used in this transition instance.
getMaximalMarkovOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
getMaximalMarkovOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousDiffSM
Returns the maximal used markov oder.
getMaximalMarkovOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getMaximalMarkovOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getMaximalMarkovOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getMaximalMarkovOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getMaximalMarkovOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getMaximalMarkovOrder() -
Method in interface de.jstacs.sequenceScores.statisticalModels.StatisticalModel
This method returns the maximal used Markov order, if possible.
getMaximalMarkovOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getMaximalMarkovOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
getMaximalMarkovOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM
getMaximalMarkovOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.BayesianNetworkTrainSM
getMaximalMarkovOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGTrainSM
getMaximalMarkovOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getMaximalMarkovOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getMaximalMarkovOrder() -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
This method returns the maximal used Markov order.
getMaximalMarkovOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.UniformTrainSM
getMaximalNumberOfChildren() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getMaximalNumberOfChildren() -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
This method returns the maximal number of children for any context used in this transition instance.
getMaximalSymbolLength() -
Method in class de.jstacs.data.alphabets.DiscreteAlphabet
Returns the length of the longest "symbol" in the alphabet.
getMaxIndex(double[]) -
Static method in class de.jstacs.utils.ToolBox
Returns the index with maximal value in a double
array.
getMaxIndex(int, int, double[]) -
Static method in class de.jstacs.utils.ToolBox
Returns the index with maximal value in a double
array.
getMaxOfDeviation(StatisticalModel, StatisticalModel, int) -
Static method in class de.jstacs.utils.StatisticalModelTester
This method computes the maximum deviation between the probabilities for
all sequences of length
for discrete models m1
and m2
.
getMeanParameters(boolean, int) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
Returns the mean parameters over all samplings of all stationary phases.
getMeasure(double, double, double, double) -
Method in class de.jstacs.classifiers.performanceMeasures.MaximumCorrelationCoefficient
getMeasure(double, double, double, double) -
Method in class de.jstacs.classifiers.performanceMeasures.MaximumFMeasure
getMeasure(double, double, double, double) -
Method in class de.jstacs.classifiers.performanceMeasures.MaximumNumericalTwoClassMeasure
This measure compute the measure for a given confusion matrix
getMeasure() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSMParameterSet
Returns the structure Measure
defined by this set of parameters.
getMeasureName() -
Method in class de.jstacs.classifiers.performanceMeasures.MaximumCorrelationCoefficient
getMeasureName() -
Method in class de.jstacs.classifiers.performanceMeasures.MaximumFMeasure
getMeasureName() -
Method in class de.jstacs.classifiers.performanceMeasures.MaximumNumericalTwoClassMeasure
This method returns a short name of the measure without any parameters.
getMI(double[][][][][][], double) -
Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Computes the mutual information from counts
counted on
sequences with a total weight of n
.
getMI(double[][][][], double) -
Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Computes the mutual information from counts
counted on
sequences with a total weight of n
.
getMIInBits(DataSet, double[]) -
Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.TwoPointEvaluater
This method computes the pairwise mutual information (in bits) between
the sequence positions.
getMin(int) -
Method in class de.jstacs.data.AlphabetContainer
Returns the minimal value of the underlying Alphabet
of position
pos
.
getMin() -
Method in class de.jstacs.data.alphabets.Alphabet
Returns the minimal value of theAlphabet
.
getMin() -
Method in class de.jstacs.data.alphabets.ContinuousAlphabet
getMin() -
Method in class de.jstacs.data.alphabets.DiscreteAlphabet
getMin() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
Returns the minimal value that can be scored.
getMinimalAlphabetLength() -
Method in class de.jstacs.data.AlphabetContainer
Returns the minimal Alphabet
length of this
AlphabetContainer
.
getMinimalElementLength() -
Method in class de.jstacs.data.DataSet
Returns the minimal length of an element, i.e. a Sequence
, in
this DataSet
.
getMinimalHyperparameter() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.TransitionElement
This method returns the minimal hyper parameters of this TransitionElement
.
getMinimalSequenceLength() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.HiddenMotifMixture
Returns the minimal length a sequence respectively a sample has to have.
getMinimalSequenceLength() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
getModel(int) -
Method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
Returns a clone of the TrainableStatisticalModel
for a specified class.
getModel(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Returns a deep copy of the i
-th model.
getModelInstanceName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters.BayesianNetworkTrainSMParameterSet
This method returns a short description of the model.
getModelInstanceName(StructureLearner.ModelType, byte, StructureLearner.LearningType, double) -
Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters.IDGTrainSMParameterSet
This method returns a short textual representation of the model instance.
getModels() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
Returns the a deep copy of the models.
getModels() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Returns a deep copy of the models.
getMostProbableSequence(SequenceScore, int) -
Static method in class de.jstacs.utils.StatisticalModelTester
Returns one most probable sequence for the discrete model m
.
getMotifDiscoverer() -
Method in class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
This method returns a clone of the internally used MotifDiscoverer
.
getMotifLength(int) -
Method in interface de.jstacs.motifDiscovery.MotifDiscoverer
This method returns the length of the motif with index motif
.
getMotifLength(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getMotifLength(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getMotifLength(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getMotifLength(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getMotifLength(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
getMRG() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method creates the multivariate random generator that will be used
during initialization.
getMRGParams() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method creates the parameters used in a multivariate random
generator while initialization.
getMultiClassScores(DataSet[]) -
Method in class de.jstacs.classifiers.AbstractClassifier
This method returns a multidimensional array with class specific scores.
getMultiClassScores(DataSet[]) -
Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
getName() -
Method in class de.jstacs.AnnotatedEntity
Returns the name of the AnnotatedEntity
.
getName() -
Method in class de.jstacs.classifiers.performanceMeasures.AbstractPerformanceMeasure
The method returns the name of the performance measure.
getName() -
Method in class de.jstacs.classifiers.performanceMeasures.AucPR
getName() -
Method in class de.jstacs.classifiers.performanceMeasures.AucROC
getName() -
Method in class de.jstacs.classifiers.performanceMeasures.ClassificationRate
getName() -
Method in class de.jstacs.classifiers.performanceMeasures.ConfusionMatrix
getName() -
Method in class de.jstacs.classifiers.performanceMeasures.FalsePositiveRateForFixedSensitivity
getName() -
Method in class de.jstacs.classifiers.performanceMeasures.MaximumNumericalTwoClassMeasure
getName() -
Method in class de.jstacs.classifiers.performanceMeasures.PositivePredictiveValueForFixedSensitivity
getName() -
Method in class de.jstacs.classifiers.performanceMeasures.PRCurve
getName() -
Method in class de.jstacs.classifiers.performanceMeasures.ROCCurve
getName() -
Method in class de.jstacs.classifiers.performanceMeasures.SensitivityForFixedSpecificity
getName(Class<? extends ParameterSet>) -
Static method in class de.jstacs.parameters.ParameterSet
Returns a name for the class.
getName(ParameterSet) -
Static method in class de.jstacs.parameters.ParameterSet
Returns a name for the ParameterSet
.
getName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloNode
This method returns the name of the current instance
getName() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloTree
This method returns the name of the PhyloTree
getNameOfAlgorithm() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Returns the name of the used algorithm.
getNameOfAssessment() -
Method in class de.jstacs.classifiers.assessment.ClassifierAssessment
Returns the name of this class.
getNames() -
Method in class de.jstacs.AnnotatedEntityList
Returns the names of all AnnotatedEntity
s in the list.
getNewAlphabet() -
Method in class de.jstacs.data.alphabets.DiscreteAlphabetMapping
Returns the new Alphabet that is used for mapping.
getNewAlphabetContainer(AlphabetContainer, DiscreteAlphabetMapping...) -
Static method in class de.jstacs.data.sequences.MappedDiscreteSequence
This method allows to create a new AlphabetContainer
given an old AlphabetContainer
and some DiscreteAlphabetMapping
s.
getNewComponentProbs(double[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Estimates the weights of each component.
getNewDiscreteValue(int) -
Method in class de.jstacs.data.alphabets.DiscreteAlphabetMapping
This method implements the main transformation of the values.
getNewInstance() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.CompositeLogPrior
getNewInstance() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.DoesNothingLogPrior
getNewInstance() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.LogPrior
This method returns an empty new instance of the current prior.
getNewInstance() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateLogPrior
getNewInstance() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SimpleGaussianSumLogPrior
getNewParameters(int, double[][], double[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
getNewParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
This method set all parameters for the next sampling step
getNewParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingPhyloHMM
getNewParameters(int, double[][], double[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method trains the internal models on the internal sample and the
given weights.
getNewParameters(int, double[][], double[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.HiddenMotifMixture
getNewParametersForModel(int, int, int, double[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method trains the internal model with index modelIndex
on the internal sample and the given weights.
getNewStartDistance() -
Method in class de.jstacs.algorithms.optimization.ConstantStartDistance
getNewStartDistance() -
Method in class de.jstacs.algorithms.optimization.LimitedMedianStartDistance
getNewStartDistance() -
Method in interface de.jstacs.algorithms.optimization.StartDistanceForecaster
This method returns the new positive start distance.
getNewWeights(double[], double[], double[][]) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Computes sequence weights and returns the score.
getNewWeights(double[], double[], double[][]) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.MixtureTrainSM
Computes sequence weights and returns the score.
getNewWeights(double[], double[], double[][]) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
getNewWeights(double[], double[], double[][]) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
Computes sequence weights and returns the score.
getNextContext(int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method returns the next context that will be visited when visiting the child with index index
.
getNodeLabel(double, String, NumberFormat) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
getNodeLabel(double, String, NumberFormat) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getNodeLabel(double, String, NumberFormat) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.Emission
Returns the graphviz label of the node containing this emission.
getNodeLabel(double, String, NumberFormat) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.MixtureEmission
getNodeLabel(double, String, NumberFormat) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getNodeLabel(double, String, NumberFormat) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
getNodeShape(boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
getNodeShape(boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getNodeShape(boolean) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.Emission
Returns the graphviz string for the shape of the node.
getNodeShape(boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.MixtureEmission
getNodeShape(boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getNodeShape(boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
getNormalizedVersion(DifferentiableStatisticalModel, int) -
Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
This method returns a normalized version of a DifferentiableStatisticalModel.
getNucleicAcid() -
Method in enum de.jstacs.data.DinucleotideProperty
Returns the kind of nucleic acid, e.g.
getNumberOfAlignedSequences() -
Method in class de.jstacs.algorithms.alignment.StringAlignment
Returns the number of sequences in this alignment.
getNumberOfAllNodesBelow() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloNode
This method returns the total number of PhyloNode
s in the subtree starting from this instance
getNumberOfAlphabets() -
Method in class de.jstacs.data.AlphabetContainer
This method returns the number of Alphabet
s used in the current AlphabetContainer
.
getNumberOfAvailableProcessors() -
Static method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
This method returns the number of available processors.
getNumberOfBoundSequences(DataSet, double[], int) -
Method in class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
Returns the number of sequences in data
that are predicted to be bound at least once by motif no.
getNumberOfChildren() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method returns the number of states that can be visited.
getNumberOfChildren(int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getNumberOfChildren(int, int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
This method returns the number of children states for given index, i.e. context, and
a given layer of the matrix.
getNumberOfClasses() -
Method in class de.jstacs.classifiers.AbstractClassifier
Returns the number of classes that can be distinguished.
getNumberOfClasses() -
Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
getNumberOfCombinations(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.CombinationIterator
Returns the number of possible combinations.
getNumberOfComponents() -
Method in interface de.jstacs.motifDiscovery.MotifDiscoverer
Returns the number of components in this MotifDiscoverer
.
getNumberOfComponents() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getNumberOfComponents() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getNumberOfComponents() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
Returns the number of different components of this
AbstractMixtureDiffSM
.
getNumberOfComponents() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Returns the number of components the are modeled by this
AbstractMixtureTrainSM
.
getNumberOfElements() -
Method in class de.jstacs.data.DataSet
Returns the number of elements, i.e. the Sequence
s, in this
DataSet
.
getNumberOfElements() -
Method in class de.jstacs.data.DataSet.WeightedDataSetFactory
Returns the number of elements, i.e.
getNumberOfElements() -
Method in class de.jstacs.io.StringExtractor
Returns the number of String
s that have been read.
getNumberOfElementsWithLength(int) -
Method in class de.jstacs.data.DataSet
Returns the number of overlapping elements that can be extracted.
getNumberOfElementsWithLength(int, double[]) -
Method in class de.jstacs.data.DataSet
Returns the weighted number of overlapping elements that can be extracted.
getNumberOfIndexes(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getNumberOfIndexes(int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
This method computes the number of different indexes for a given layer of the matrix.
getNumberOfLines() -
Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier.DoubleTableResult
Returns the number of lines in this table.
getNumberOfModels() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
This method returns the number of models in the CompositeTrainSM
.
getNumberOfMotifs() -
Method in interface de.jstacs.motifDiscovery.MotifDiscoverer
Returns the number of motifs for this MotifDiscoverer
.
getNumberOfMotifs() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getNumberOfMotifs() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getNumberOfMotifs() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getNumberOfMotifs() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getNumberOfMotifs() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
getNumberOfMotifsInComponent(int) -
Method in interface de.jstacs.motifDiscovery.MotifDiscoverer
Returns the number of motifs that are used in the component
component
of this MotifDiscoverer
.
getNumberOfMotifsInComponent(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getNumberOfMotifsInComponent(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getNumberOfMotifsInComponent(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getNumberOfMotifsInComponent(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getNumberOfMotifsInComponent(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
getNumberOfNexts(int) -
Method in class de.jstacs.parameters.MultiSelectionParameter
Returns the number of calls of
MultiSelectionParameter.next()
that can be called
before false
is returned.
getNumberOfNexts(int) -
Method in class de.jstacs.parameters.RangeParameter
Returns the number of calls of RangeParameter.next()
that can be done before
obtaining false
.
getNumberOfNodes() -
Method in class de.jstacs.algorithms.graphs.tensor.Tensor
Returns the number of nodes.
getNumberOfNodes() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloTree
This method returns the total number of nodes in the tree
getNumberOfParameters() -
Method in class de.jstacs.parameters.ArrayParameterSet
getNumberOfParameters() -
Method in class de.jstacs.parameters.ParameterSet
Returns the number of parameters in the ParameterSet
.
getNumberOfParameters() -
Method in class de.jstacs.parameters.SequenceScoringParameterSet
getNumberOfParameters() -
Method in interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore
Returns the number of parameters in this DifferentiableSequenceScore
.
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.differentiable.logistic.LogisticDiffSS
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.differentiable.UniformDiffSS
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.UniformDurationDiffSM
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MultiDimensionalSequenceWrapperDiffSM
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
getNumberOfParameters() -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.DifferentiableEmission
Returns the number of parameters of this emission.
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
getNumberOfParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method returns the number of parameters in this transition element.
getNumberOfParents() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
Returns the number of parents for the random variable of this
BNDiffSMParameterTree
in the network structure of the enclosing
BayesianNetworkDiffSM
.
getNumberOfPossibilities() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
Returns the number of different possibilities that can be scored.
getNumberOfRecommendedStarts() -
Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getNumberOfRecommendedStarts() -
Method in interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore
This method returns the number of recommended optimization starts.
getNumberOfRecommendedStarts() -
Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
getNumberOfRecommendedStarts() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getNumberOfRecommendedStarts() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getNumberOfRecommendedStarts() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getNumberOfRecommendedStarts() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
getNumberOfRecommendedStarts() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
getNumberOfRecommendedStarts() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
getNumberOfRecommendedStarts() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getNumberOfRecommendedStarts() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getNumberOfResults() -
Method in class de.jstacs.results.ResultSet
Returns the number of Result
s in this ResultSet
getNumberOfSequenceAnnotationsByType(String) -
Method in class de.jstacs.data.sequences.Sequence
Returns the number of SequenceAnnotation
s of type type
for this Sequence
.
getNumberOfSequences() -
Method in class de.jstacs.data.sequences.MultiDimensionalSequence
This method returns the number of internal sequences.
getNumberOfSequences() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.SequenceIterator
This method returns the number of sequences in this iterator,
i.e., the number of times SequenceIterator.next()
returns true
after using SequenceIterator.reset()
.
getNumberOfSpecificConstraints() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
Returns the number of specific constraints.
getNumberOfStarts() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
Returns the number of independent sampling starts
getNumberOfStarts() -
Method in class de.jstacs.sampling.AbstractBurnInTestParameterSet
Returns the number of starts.
getNumberOfStarts(DifferentiableSequenceScore[]) -
Static method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
Returns the number of recommended starts in a numerical optimization.
getNumberOfStarts() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.HMMTrainingParameterSet
The method returns the number of different starts.
getNumberOfStates() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns the number of the (hidden) states
getNumberOfStates() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getNumberOfStates() -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
This method returns the number of states underlying this transition
instance.
getNumberOfStationarySamplings() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
Returns the number of samplings steps in the stationary phase
getNumberOfStepsInStationaryPhase() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.SamplingHMMTrainingParameterSet
The method returns the number of steps to be done in the stationary phase.
getNumberOfStepsPerIteration() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.SamplingHMMTrainingParameterSet
This method returns the number of steps to be done in each start before testing for the end of the burn in phase (again).
getNumberOfTestSamplings() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
Returns the number of samplings between checks for the stationary phase
getNumberOfThreads() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
Returns the number of used threads for evaluating the function and for determining the gradient of the function.
getNumberOfThreads() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
This method returns the number of used threads while optimization.
getNumberOfThreads() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifierParameterSet
This method returns the number of threads that should be used during optimization.
getNumberOfThreads() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifierParameterSet
Returns the number of threads for evaluating the LogGenDisMixFunction
getNumberOfThreads() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns the number of threads that is internally used.
getNumberOfThreads() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.MultiThreadedTrainingParameterSet
This method returns the number of threads that should be used during optimization.
getNumberOfValues() -
Method in class de.jstacs.parameters.MultiSelectionParameter
getNumberOfValues() -
Method in interface de.jstacs.parameters.RangeIterator
Returns the number of values in the collection.
getNumberOfValues() -
Method in class de.jstacs.parameters.RangeParameter
Returns the number of values in a list or range of parameter values.
getNumericalCharacteristics() -
Method in class de.jstacs.classifiers.AbstractClassifier
Returns the subset of numerical values that are also returned by
AbstractClassifier.getCharacteristics()
.
getNumericalCharacteristics() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
getNumericalCharacteristics() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
getNumericalCharacteristics() -
Method in class de.jstacs.classifiers.MappingClassifier
getNumericalCharacteristics() -
Method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
getNumericalCharacteristics() -
Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getNumericalCharacteristics() -
Method in interface de.jstacs.sequenceScores.SequenceScore
Returns the subset of numerical values that are also returned by
SequenceScore.getCharacteristics()
.
getNumericalCharacteristics() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
getNumericalCharacteristics() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.DifferentiableStatisticalModelWrapperTrainSM
getNumericalCharacteristics() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM
getNumericalCharacteristics() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM
getNumericalCharacteristics() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getNumericalCharacteristics() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
getNumericalCharacteristics() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.UniformTrainSM
getNumericalCharacteristics() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.VariableLengthWrapperTrainSM
getOffsetForAucPR() -
Method in class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
This method returns an offset that must be added to scores for computing PR curves.
getOptimalBranching(double[][], double[][], byte) -
Static method in class de.jstacs.algorithms.graphs.Chu_Liu_Edmonds
Returns an optimal branching.
getOrder() -
Method in class de.jstacs.algorithms.graphs.tensor.Tensor
Returns the order.
getOrder() -
Method in enum de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder.RandomSeqType
This method returns the Markov order.
getOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.MarkovModelDiffSM
Returns the order of the inhomogeneous Markov model.
getOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.InhomogeneousMarkov
Returns the order of the Markov model as defined in the constructor
getOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.InhomogeneousMarkov.InhomogeneousMarkovParameterSet
Returns the order of the InhomogeneousMarkov
structure
measure as defined by this set of parameters.
getOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMExplainingAwayResidual.PMMExplainingAwayResidualParameterSet
Returns the order defined by this set of parameters.
getOrder() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMMutualInformation.PMMMutualInformationParameterSet
Returns the order defined by this set of parameters.
getOutfilePrefix() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
Returns the prefix of the temporary files for storing sampled
parameter values
getOutput(byte[], double) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhCondProb
This method is used to create random sequences.
getOutputStream() -
Method in class de.jstacs.utils.galaxy.GalaxyAdaptor.Protocol
Returns the ByteArrayOutputStream
of this protocol
getOutputStream() -
Method in class de.jstacs.utils.SafeOutputStream
Returns the internal used OutputStream
.
getParameterAt(int) -
Method in class de.jstacs.parameters.ArrayParameterSet
getParameterAt(int) -
Method in class de.jstacs.parameters.ParameterSet
Returns the Parameter
at position i
.
getParameterAt(int) -
Method in class de.jstacs.parameters.SequenceScoringParameterSet
getParameterFor(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
Returns the BNDiffSMParameter
that is responsible for the suffix of
sequence seq
starting at position start
.
getParameterForName(String) -
Method in class de.jstacs.parameters.ParameterSet
Returns the Parameter
with name name
.
getParameterFromTag(String) -
Method in class de.jstacs.parameters.ParameterSetTagger
This method returns the Parameter
specified by the tag
getParameterIndexesForSamplingStep(int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
Returns the indexes of the parameters, incremented by offset
, that
shall be sampled in step step
of a grouped sampling process.
getParameters(OptimizableFunction.KindOfParameter, double[]) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractOptimizableFunction
This method enables the user to get the parameters without creating a new
array.
getParameters(OptimizableFunction.KindOfParameter) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractOptimizableFunction
getParameters(OptimizableFunction.KindOfParameter, double[]) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.DiffSSBasedOptimizableFunction
getParameters(OptimizableFunction.KindOfParameter) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.OptimizableFunction
Returns some parameters that can be used for instance as start
parameters.
getParameterSetContainingASingleDoubleValue(double) -
Method in class de.jstacs.classifiers.assessment.RepeatedHoldOutAssessParameterSet
Creates a new ParameterSet
containing a single
double
-SimpleParameter
.
getParameterSetFor(Class<? extends InstantiableFromParameterSet>) -
Static method in class de.jstacs.utils.SubclassFinder
Returns a LinkedList
of the classes of the
InstanceParameterSet
s that can be used to instantiate the
sub-class of InstantiableFromParameterSet
that is given by
clazz
getParametersInCollection() -
Method in class de.jstacs.parameters.AbstractSelectionParameter
Returns the possible values in this collection.
getParent() -
Method in class de.jstacs.parameters.Parameter
Returns a reference to the ParameterSet
enclosing this
Parameter
.
getParent() -
Method in class de.jstacs.parameters.ParameterSet
Returns the enclosing ParameterSetContainer
of this
ParameterSet
or null
if none exists.
getParents(DataSet, DataSet, double[], double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTExplainingAwayResidual
getParents(DataSet, DataSet, double[], double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTMutualInformation
getParents(DataSet, DataSet, double[], double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.InhomogeneousMarkov
getParents(DataSet, DataSet, double[], double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Returns the optimal parents for the given data and weights.
getParents(DataSet, DataSet, double[], double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMExplainingAwayResidual
getParents(DataSet, DataSet, double[], double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMMutualInformation
getParser() -
Method in class de.jstacs.results.DataSetResult
Returns the SequenceAnnotationParser
that can be used to
write this DataSetResult
including annotations on the contained Sequence
s
to a file.
getPartialLengths() -
Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
This method returns a deep copy of the internally used partial lengths of the parts.
getPath() -
Method in class de.jstacs.utils.galaxy.GalaxyAdaptor.FileResult
Returns the path of the directory containing the file
getPercent() -
Method in class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutAssessParameterSet
Returns the percentage of user supplied data that is used in each
iteration as test dataset.
getPercents() -
Method in class de.jstacs.classifiers.assessment.RepeatedHoldOutAssessParameterSet
Returns an array containing for each class the percentage of user
supplied data that is used in each iteration as test dataset.
getPlotCommands(REnvironment, String, AbstractScoreBasedClassifier.DoubleTableResult...) -
Static method in class de.jstacs.classifiers.AbstractScoreBasedClassifier.DoubleTableResult
This method copies the data to the server side and creates a
StringBuffer
containing the plot commands.
getPlotCommands(REnvironment, String, int[], AbstractScoreBasedClassifier.DoubleTableResult...) -
Static method in class de.jstacs.classifiers.AbstractScoreBasedClassifier.DoubleTableResult
This method copies the data to the server side and creates a
StringBuffer
containing the plot commands.
getPlotCommands(REnvironment, String, String[], AbstractScoreBasedClassifier.DoubleTableResult...) -
Static method in class de.jstacs.classifiers.AbstractScoreBasedClassifier.DoubleTableResult
This method copies the data to the server side and creates a
StringBuffer
containing the plot commands.
getPlugInParameters() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSMParameterSet
Returns true if plug-in parameters shall be used when creating a
BayesianNetworkDiffSM
from this set of parameters.
getPosition() -
Method in class de.jstacs.data.sequences.annotation.LocatedSequenceAnnotation
Returns the position of this LocatedSequenceAnnotation
on the
sequence.
getPosition() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
Returns the position of the symbol this parameter is responsible for as
defined in the constructor.
getPosition(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
Returns the position with index index
.
getPositionDependentKMerProb(Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
Returns the probability of kmer
for all possible positions in this BayesianNetworkDiffSM
starting at position kmer.getLength()-1.
getPositionForParameter(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
Returns the position in the sequence the parameter index
is
responsible for.
getPositions() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
Returns a clone of the array of used positions.
getPossibleLength(TrainableStatisticalModel...) -
Static method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
This method returns the possible length of a classifier that would use
the given TrainableStatisticalModel
s.
getPossibleLength() -
Method in class de.jstacs.data.AlphabetContainer.AbstractAlphabetContainerParameterSet
Returns the length of the AlphabetContainer
that can be instantiated using
this ParameterSet
.
getPossibleLength() -
Method in class de.jstacs.data.AlphabetContainer
Returns the possible length for Sequence
s using this
AlphabetContainer
.
getPossibleLength() -
Method in class de.jstacs.data.AlphabetContainerParameterSet
getPossibleLength() -
Method in class de.jstacs.data.alphabets.DNAAlphabetContainer.DNAAlphabetContainerParameterSet
getProbFor(Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
Returns the probability of Sequence
sequence
in this BNDiffSMParameterTree
.
getProbsForComponent(Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
Returns the probabilities for each component given a Sequence
.
getProfileOfScoresFor(int, int, Sequence, int, MotifDiscoverer.KindOfProfile) -
Method in interface de.jstacs.motifDiscovery.MotifDiscoverer
Returns the profile of the scores for component component
and motif motif
at all possible start positions of the motif
in the sequence sequence
beginning at startpos
.
getProfileOfScoresFor(int, int, Sequence, int, MotifDiscoverer.KindOfProfile) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getProfileOfScoresFor(int, int, Sequence, int, MotifDiscoverer.KindOfProfile) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getProfileOfScoresFor(int, int, Sequence, int, MotifDiscoverer.KindOfProfile) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getProfileOfScoresFor(int, int, Sequence, int, MotifDiscoverer.KindOfProfile) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getProfileOfScoresFor(int, int, Sequence, int, MotifDiscoverer.KindOfProfile) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
getProperty(Sequence, DinucleotideProperty.Smoothing) -
Method in enum de.jstacs.data.DinucleotideProperty
Computes this dinucleotide property for all overlapping twomers in original
, smoothes the result using smoothing
,
and returns the smoothed property as a double
array.
getProperty(Sequence) -
Method in enum de.jstacs.data.DinucleotideProperty
Computes this dinucleotide property for all overlapping twomers in original
and returns the result as a double
array of length original.getLength()-1
getPropertyAsSequence(Sequence) -
Method in enum de.jstacs.data.DinucleotideProperty
Computes this dinucleotide property for all overlapping twomers in original
and returns the result as a Sequence
of length original.getLength()-1
getPropertyAsSequence(Sequence, DinucleotideProperty.Smoothing) -
Method in enum de.jstacs.data.DinucleotideProperty
Computes this dinucleotide property for all overlapping twomers in original
, smoothes the result using smoothing
,
and returns the smoothed property as a Sequence
.
getPropertyImage(Sequence, DinucleotideProperty, DinucleotideProperty.Smoothing, REnvironment, int, String, int, int) -
Static method in enum de.jstacs.data.DinucleotideProperty
getPropertyImage(DataSet, DinucleotideProperty, DinucleotideProperty.Smoothing, REnvironment, int, String, int, int) -
Static method in enum de.jstacs.data.DinucleotideProperty
getProtocol(boolean) -
Method in class de.jstacs.utils.galaxy.GalaxyAdaptor
Returns an object for writing a protocol of a program run
getPseudoCount() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
Returns the pseudocount as given in the constructor.
getPubMedID() -
Method in enum de.jstacs.data.DinucleotideProperty
Returns the PubMed ID of the publication where the parameters of this property has been published.
getPValue(Sequence, DataSet) -
Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
Returns the p-value for a Sequence
candidate
with
respect to a given background DataSet
.
getPValue(DataSet, DataSet) -
Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
Returns the p-values for all Sequence
s in the DataSet
candidates
with respect to a given background DataSet
.
getPValue(double[], double) -
Static method in class de.jstacs.classifiers.utils.PValueComputation
This method searches for the insertion point of the score in a given
sorted array of scores and returns the p-value for this score.
getPValue(double[], double, int) -
Static method in class de.jstacs.classifiers.utils.PValueComputation
This method searches for the insertion point of the score in a given
sorted array of scores from index start
and returns the
p-value for this score.
getPWM() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
If this BayesianNetworkDiffSM
is a PWM, i.e.
getRandomSequence(Random, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousMM
getRandomSequence(Random, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM
This method creates a random Sequence
from a trained homogeneous
model.
getRangedInstance() -
Method in class de.jstacs.parameters.AbstractSelectionParameter
getRangedInstance() -
Method in interface de.jstacs.parameters.Rangeable
Returns an instance of RangeIterator
that has the same properties
as the current instance, but accepts a range or list of values.
getRangedInstance() -
Method in class de.jstacs.parameters.SimpleParameter
getRawResult() -
Method in class de.jstacs.results.ListResult
Returns a copy of the internal list of ResultSet
s.
getReference() -
Method in enum de.jstacs.data.DinucleotideProperty
Returns the reference of the publication where the parameters of this property has been published.
getReferenceClass() -
Method in class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutAssessParameterSet
Returns the index of the reference class.
getReferenceSequence() -
Method in class de.jstacs.data.sequences.annotation.ReferenceSequenceAnnotation
Returns the reference sequence.
getRegEx() -
Method in class de.jstacs.io.RegExFilenameFilter
Returns a representation of all used regular expressions.
getRepeats() -
Method in class de.jstacs.classifiers.assessment.RepeatedHoldOutAssessParameterSet
Returns the repeats defined by this
RepeatedHoldOutAssessParameterSet
(repeats define how many
iterations (train and test classifiers) of that
RepeatedHoldOutExperiment
this
RepeatedHoldOutAssessParameterSet
is used with are performed).
getRepeats() -
Method in class de.jstacs.classifiers.assessment.RepeatedSubSamplingAssessParameterSet
Returns the repeats defined by this
RepeatedSubSamplingAssessParameterSet
(repeats defines how many
iterations (train and test classifiers) of that
RepeatedSubSamplingExperiment
this
RepeatedSubSamplingAssessParameterSet
is used with are
performed).
getRepeats() -
Method in class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutAssessParameterSet
Returns the repeats defined by this
Sampled_RepeatedHoldOutAssessParameterSet
(repeats defines how
many iterations (train and test classifiers) of that
Sampled_RepeatedHoldOutExperiment
this
Sampled_RepeatedHoldOutAssessParameterSet
is used with are
performed).
getResultAt(int) -
Method in class de.jstacs.results.NumericalResultSet
getResultAt(int) -
Method in class de.jstacs.results.ResultSet
Returns Result
number index
in this
ResultSet
.
getResultForName(String) -
Method in class de.jstacs.results.ResultSet
Returns Result
with name name
in this
ResultSet
.
getResultInstance() -
Method in class de.jstacs.results.StorableResult
Returns the instance of the Storable
that is the result of this
StorableResult
.
getResults(LinkedList, DataSet[], PerformanceMeasureParameterSet, boolean) -
Method in class de.jstacs.classifiers.AbstractClassifier
This method computes the results for any evaluation of the classifier.
getResults(LinkedList, DataSet[], PerformanceMeasureParameterSet, boolean) -
Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
getResults(LinkedList, DataSet[], PerformanceMeasureParameterSet, boolean) -
Method in class de.jstacs.classifiers.MappingClassifier
getResults() -
Method in class de.jstacs.results.ResultSet
Returns all internal results as an array of Result
s.
getReverseComplementaryDataSet() -
Method in class de.jstacs.data.DataSet
Returns a DataSet
that contains the reverse complement of all Sequence
s in
this DataSet
.
getReverseComplementDistributions(ComplementableDiscreteAlphabet, double[][][]) -
Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
This method computes the reverse complement distributions for given conditional distributions.
getReverseSwitches() -
Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
This method returns a deep copy of the internally used switches for the parts whether to use the corresponding
DifferentiableSequenceScore
forward or as reverse complement.
getRNotation(String) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
This method returns the distribution in R notation.
getRNotation(String) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
getRNotation(String) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
getRNotation(String) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.UniformDurationDiffSM
getRoot() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloTree
This method returns the root node of the tree
getRootValue(int) -
Method in class de.jstacs.algorithms.graphs.tensor.AsymmetricTensor
getRootValue(int) -
Method in class de.jstacs.algorithms.graphs.tensor.SubTensor
getRootValue(int) -
Method in class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
getRootValue(int) -
Method in class de.jstacs.algorithms.graphs.tensor.Tensor
Returns the value for child
as root.
getRunTimeException(Exception) -
Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method creates an RuntimeException
from any other Exception
getSafeOutputStream(OutputStream) -
Static method in class de.jstacs.utils.SafeOutputStream
This method returns an instance of SafeOutputStream
for a given OutputStream
.
getSamplingComponent() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
Returns a sampling component suited for this SamplingScoreBasedClassifier
getSamplingGroups(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getSamplingGroups(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.MarkovModelDiffSM
getSamplingGroups(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getSamplingGroups(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getSamplingGroups(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getSamplingGroups(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
getSamplingGroups(int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.SamplingDifferentiableStatisticalModel
Returns groups of indexes of parameters that shall be drawn
together in a sampling procedure
getSamplingGroups(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getSamplingGroups(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getSamplingScheme() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
Returns the sampling scheme
getScale() -
Method in class de.jstacs.parameters.RangeParameter
Returns a description of the the scale of a range of parameter values.
getScatterplot(AbstractScoreBasedClassifier, AbstractScoreBasedClassifier, DataSet, DataSet, REnvironment, boolean) -
Static method in class de.jstacs.classifiers.utils.ClassificationVisualizer
This method returns an ImageResult
containing a scatter plot of
the scores for the given classifiers cl1
and
cl2
.
getScore(Tensor, int[][]) -
Static method in class de.jstacs.algorithms.graphs.DAG
Returns the score for any graph.
getScore(Sequence, int) -
Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
This method returns the score for a given Sequence
and a given
class.
getScore(Sequence, int, boolean) -
Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
This method returns the score for a given Sequence
and a given
class.
getScore(Sequence, int, boolean) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
getScore(Sequence, int, boolean) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
getScore(Sequence, int, boolean) -
Method in class de.jstacs.classifiers.MappingClassifier
getScore(Sequence, int, boolean) -
Method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
getScoreForBestRun() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Returns the value of the optimized function from the best run of the last
training.
getScoreForPath(Tensor, int, byte, int[]) -
Static method in class de.jstacs.algorithms.graphs.DAG
Returns the score for a given path path
using the first
l
nodes and dependencies of order k
.
getScores(DataSet) -
Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
This method returns the scores of the classifier for any Sequence
in the DataSet
.
getScores(DataSet) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
getScores(DataSet) -
Method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
getSecondElement() -
Method in class de.jstacs.utils.Pair
This method returns the second element.
getSelected() -
Method in class de.jstacs.parameters.MultiSelectionParameter
Returns the indexes of the selected options.
getSelected() -
Method in class de.jstacs.parameters.SelectionParameter
Returns the index of the selected value.
getSelectionParameter(Class<? extends ParameterSet>, String, String, String, boolean) -
Static method in class de.jstacs.utils.SubclassFinder
This method creates an SelectionParameter
that contains
InstanceParameterSet
for each possible
class.
getSequence(int) -
Method in class de.jstacs.data.sequences.MultiDimensionalSequence
This method returns the internal sequence with index index
.
getSequenceAnnotationByType(String, int) -
Method in class de.jstacs.data.sequences.Sequence
Returns the SequenceAnnotation
no.
getSequenceAnnotationByTypeAndIdentifier(String, String) -
Method in class de.jstacs.data.sequences.Sequence
Returns the SequenceAnnotation
of this Sequence
that has type type
and identifier identifier
.
getSequenceAnnotationIndexMatrix(String, Hashtable<String, Integer>, String, Hashtable<String, Integer>) -
Method in class de.jstacs.data.DataSet
This method creates a matrix which contains the index of the Sequence
with specific SequenceAnnotation
combination or -1 if the DataSet
does not contain any Sequence
with such a combination.
getSequenceWeights() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractOptimizableFunction
getSequenceWeights() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.OptimizableFunction
Returns the weights for each Sequence
for each
class used in this OptimizableFunction
.
getShannonEntropy(StatisticalModel, int) -
Static method in class de.jstacs.utils.StatisticalModelTester
This method computes the Shannon entropy for any discrete model
m
and all sequences of length
, if possible.
getShannonEntropyInBits(StatisticalModel, int) -
Static method in class de.jstacs.utils.StatisticalModelTester
This method computes the Shannon entropy in bits for any discrete model
m
and all sequences of length
, if possible.
getShortFromParameter(Parameter) -
Static method in class de.jstacs.io.ParameterSetParser
Returns the short
which is the value of the
Parameter
par
.
getSimplifiedAlphabetContainer(Alphabet[], int[]) -
Static method in class de.jstacs.data.AlphabetContainer
This method creates a new AlphabetContainer
that uses as less as
possible Alphabet
s to describe the container.
getSingelton(Class<? extends Singleton>) -
Static method in class de.jstacs.Singleton.SingletonHandler
This method helps to retrieve the single instance of a Singleton
singletonClass
.
getSizeOfEventSpace() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
getSizeOfEventSpace() -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.DifferentiableEmission
Returns the size of the event space, i.e., the number of possible outcomes,
for the random variables of this emission
getSizeOfEventSpace() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getSizeOfEventSpace() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getSizeOfEventSpace() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
getSizeOfEventSpace(int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.DifferentiableTransition
Returns the size of the event space, i.e., the number of possible outcomes,
for the random variable of parameter index
getSizeOfEventSpace(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
getSizeOfEventSpaceForRandomVariablesOfParameter(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.DifferentiableStatisticalModel
Returns the size of the event space of the random variables that are
affected by parameter no.
getSizeOfEventSpaceForRandomVariablesOfParameter(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getSmoothedProfile(int, String...) -
Method in class de.jstacs.motifDiscovery.KMereStatistic
This method returns an array of smoothed profiles.
getSmoothedProfile(int, Sequence...) -
Method in class de.jstacs.motifDiscovery.KMereStatistic
This method returns an array of smoothed profiles.
getSortedInitialParameters(DifferentiableSequenceScore[], MutableMotifDiscovererToolbox.InitMethodForDiffSM[], DiffSSBasedOptimizableFunction, int, OutputStream, int) -
Static method in class de.jstacs.motifDiscovery.MutableMotifDiscovererToolbox
This method allows to initialize the DifferentiableSequenceScore
using different MutableMotifDiscovererToolbox.InitMethodForDiffSM
.
getSortedScoresForMotifAndFlanking(DataSet, DataSet, String) -
Static method in class de.jstacs.motifDiscovery.MotifDiscoveryAssessment
Returns the scores read from the prediction pred
for the motif with identifier identifier
and flanking sequences as annotated in
the DataSet
data.
getSortedValuesForMotifAndFlanking(DataSet, double[][], double, double, String) -
Static method in class de.jstacs.motifDiscovery.MotifDiscoveryAssessment
This method provides some score arrays that can be used in AbstractPerformanceMeasure
to determine some
curves or area under curves based on the values of the predictions.
getSpecificName() -
Method in class de.jstacs.classifiers.performanceMeasures.MaximumCorrelationCoefficient
getSpecificName() -
Method in class de.jstacs.classifiers.performanceMeasures.MaximumFMeasure
getSpecificName() -
Method in class de.jstacs.classifiers.performanceMeasures.MaximumNumericalTwoClassMeasure
This method returns a specific name of the measure including any parameters.
getStartDistance() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.NumericalHMMTrainingParameterSet
This method returns the start distance that should be used in the line search during the optimization.
getStartIndexOfAlignmentForFirst() -
Method in class de.jstacs.algorithms.alignment.PairwiseStringAlignment
This method returns the start index of the alignment in the first sequence.
getStartNode() -
Method in class de.jstacs.algorithms.graphs.Edge
Returns the start node of the edge.
getStartPositions(int, DataSet, int, int) -
Method in class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
This method returns a list of start positions of binding sites.
getStartValue() -
Method in class de.jstacs.parameters.RangeParameter
Returns the start value of a range of parameter values or
null
if no range was specified.
getStatePosteriorMatrixFor(Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns the log state posterior of all states for a sequence.
getStatePosteriorMatrixFor(DataSet) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns the state posteriors for all sequences of the sample data
.
getStationaryDistribution(double[], int) -
Static method in class de.jstacs.utils.StationaryDistribution
This method return the stationary distribution.
getStatistics() -
Method in class de.jstacs.results.MeanResultSet
Returns the means and (if possible the) standard errors of the results in
this MeanResultSet
as a new NumericalResultSet
.
getStatistics(DataSet, double[], int, double) -
Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Counts the occurrences of symbols of the AlphabetContainer
of
DataSet
s
using weights
.
getStatisticsOrderTwo(DataSet, double[], int, double) -
Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Counts the occurrences of symbols of the AlphabetContainer
of
DataSet
s
using weights
.
getSteps() -
Method in class de.jstacs.parameters.RangeParameter
Returns the number of steps of a range of parameter values or
0
if no range was specified.
getStrand(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
This method returns the preferred StrandedLocatedSequenceAnnotationWithLength.Strand
for a given subsequence.
getStrand(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
This method return the preferred StrandedLocatedSequenceAnnotationWithLength.Strand
for a Sequence
beginning at startPos
.
getStrandedness() -
Method in class de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength
Returns the strandedness, i.e the orientation of this annotation.
getStrandProbabilitiesFor(int, int, Sequence, int) -
Method in interface de.jstacs.motifDiscovery.MotifDiscoverer
This method returns the probabilities of the strand orientations for a given subsequence if it is
considered as site of the motif model in a specific component.
getStrandProbabilitiesFor(int, int, Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getStrandProbabilitiesFor(int, int, Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getStrandProbabilitiesFor(int, int, Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getStrandProbabilitiesFor(int, int, Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getStrandProbabilitiesFor(int, int, Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
getStringFromParameter(Parameter) -
Static method in class de.jstacs.io.ParameterSetParser
Returns the String
which is the value of the Parameter
par
.
getStringRepresentation(Object) -
Method in class de.jstacs.data.sequences.ArbitraryFloatSequence
getStringRepresentation(Object) -
Method in class de.jstacs.data.sequences.ArbitrarySequence
getStringRepresentation(Object) -
Method in class de.jstacs.data.sequences.MultiDimensionalSequence
getStringRepresentation(Object) -
Method in class de.jstacs.data.sequences.Sequence
This method creates a String representation from the given representation.
getStringRepresentation(Object) -
Method in class de.jstacs.data.sequences.Sequence.RecursiveSequence
getStringRepresentation(Object) -
Method in class de.jstacs.data.sequences.SimpleDiscreteSequence
getStructure() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM
getStructure() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGTrainSM
getStructure() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM
Returns a String
representation of the underlying graph.
getStructure() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
Returns a String
representation of the structure of the used
models.
getStructure(DataSet, double[], StructureLearner.ModelType, byte, StructureLearner.LearningType) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.StructureLearner
This method finds the optimal structure of a model by using a given
learning method (in some sense).
getStructure(Tensor, StructureLearner.ModelType, byte) -
Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.StructureLearner
This method can be used to determine the optimal structure of a model.
getStructureFromPath(int[], Tensor) -
Static method in class de.jstacs.algorithms.graphs.DAG
Extracts the structure from a given path path
and
score-"function".
getSubAnnotations() -
Method in class de.jstacs.data.sequences.annotation.SequenceAnnotation
Returns the sub-annotations of this SequenceAnnotation
as given
in the constructor.
getSubContainer(int, int) -
Method in class de.jstacs.data.AlphabetContainer
Returns a sub-container with the Alphabet
s for the positions
starting at start
and with length length
.
getSubSequence(AlphabetContainer, int) -
Method in class de.jstacs.data.sequences.Sequence
This method should be used if one wants to create a DataSet
of
subsequences of defined length.
getSubSequence(AlphabetContainer, int, int) -
Method in class de.jstacs.data.sequences.Sequence
This method should be used if one wants to create a DataSet
of
subsequences of defined length.
getSubSequence(int) -
Method in class de.jstacs.data.sequences.Sequence
This is a very efficient way to create a subsequence/suffix for
Sequence
s with a simple AlphabetContainer
.
getSubSequence(int, int) -
Method in class de.jstacs.data.sequences.Sequence
This is a very efficient way to create a subsequence of defined length
for Sequence
s with a simple AlphabetContainer
.
getSuffixDataSet(int) -
Method in class de.jstacs.data.DataSet
This method enables you to use only a suffix of all elements, i.e. the
Sequence
, in the current DataSet
.
getSumOfDeviation(StatisticalModel, StatisticalModel, int) -
Static method in class de.jstacs.utils.StatisticalModelTester
This method computes the sum of deviations between the probabilities for
all sequences of length
for discrete models m1
and m2
.
getSumOfDistribution(StatisticalModel, int) -
Static method in class de.jstacs.utils.StatisticalModelTester
This method computes the marginal distribution for any discrete model
m
and all sequences of length
, if possible.
getSumOfHyperparameter() -
Method in class de.jstacs.utils.random.DirichletMRGParams
Returns the sum of the hyperparameters (entries of the hyperparameter
vector) of the underlying Dirichlet distribution.
getSumOfHyperparameter() -
Method in class de.jstacs.utils.random.ErlangMRGParams
Returns the sum of the hyperparameters (entries of the hyperparameter
vector) of the underlying Erlang distribution.
getSumOfHyperParameters(int, int, double) -
Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
This method returns an array that can be used in the constructor
HomogeneousMMDiffSM.HomogeneousMMDiffSM(AlphabetContainer, int, double, double[], boolean, boolean, int)
containing the sums of the specific hyperparameters.
getSumOfWeights() -
Method in class de.jstacs.data.DataSet.WeightedDataSetFactory
Returns the sum of all weights.
getSuperClassOf(T...) -
Static method in class de.jstacs.io.ArrayHandler
This method returns the deepest class in the class hierarchy that is the
class or a superclass of all instances in the array.
getSymbol(int, double) -
Method in class de.jstacs.data.AlphabetContainer
Returns a String
representation of the encoded symbol
val
of the Alphabet
of position pos
of
this AlphabetContainer
.
getSymbolAt(int) -
Method in class de.jstacs.data.alphabets.DiscreteAlphabet
Returns the symbol at position i
in the alphabet.
getSymKLDivergence(StatisticalModel, StatisticalModel, int) -
Static method in class de.jstacs.utils.StatisticalModelTester
Returns the difference of the Kullback-Leibler-divergences, i.e.
getTempDir() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
Returns the directory for parameter files set in this SamplingScoreBasedClassifier
.
getTensor(DataSet, double[], byte, StructureLearner.LearningType) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.StructureLearner
This method can be used to compute a Tensor
that can be used to
determine the optimal structure.
getTerminantionCondition() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifierParameterSet
This method returns the AbstractTerminationCondition
for stopping the training, e.g., if the
difference of the scores between two iterations is smaller than a given
threshold the training is stopped.
getTerminationCondition() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.MaxHMMTrainingParameterSet
This method returns the AbstractTerminationCondition
for stopping the training, e.g., if the
difference of the scores between two iterations is smaller than a given
threshold the training is stopped.
getThreshold(double[], int) -
Static method in class de.jstacs.classifiers.utils.PValueComputation
This method returns the threshold that determines if an observed score is
significant.
getThreshold() -
Method in class de.jstacs.sampling.VarianceRatioBurnInTestParameterSet
Returns the threshold used in the VarianceRatioBurnInTestParameterSet
.
getTimeInstance(OutputStream) -
Static method in class de.jstacs.utils.Time
This method tries to return a UserTime
instance, if not possible (due to native code) it returns a RealTime
instance.
getTopologicalOrder(int[][]) -
Static method in class de.jstacs.algorithms.graphs.TopSort
Returns the topological order of indexes according to
parents2
.
getTopologicalOrder2(byte[][]) -
Static method in class de.jstacs.algorithms.graphs.TopSort
Computes a topological ordering for a given graph.
getTrain_TestNumbers(boolean) -
Method in class de.jstacs.classifiers.assessment.RepeatedSubSamplingAssessParameterSet
Returns an array containing the number of elements the subsampled (train
| test) datasets should consist of.
getTransitionElementIndex(int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
This method return the index of the BasicHigherOrderTransition.AbstractTransitionElement
using the BasicHigherOrderTransition.lookup
table.
getTrueIndexForLastGetBest() -
Method in class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
Returns the edge from SymmetricTensor.getBest(int, int[], byte)
in an encoded
index.
getType() -
Method in class de.jstacs.data.AlphabetContainer
Returns the type of this AlphabetContainer
.
getType() -
Method in enum de.jstacs.data.DinucleotideProperty
Returns the type of this property.
getType() -
Method in class de.jstacs.data.sequences.annotation.SequenceAnnotation
Returns the type of this SequenceAnnotation
as given in the
constructor.
getUniqueHueValues(int) -
Static method in class de.jstacs.utils.ToolBox
Creates an array of hue values that can be used for the representation
of probabilities.
getValidator() -
Method in class de.jstacs.parameters.SimpleParameter
Returns the ParameterValidator
used in this
SimpleParameter
.
getValue(byte, int, int...) -
Method in class de.jstacs.algorithms.graphs.tensor.AsymmetricTensor
getValue(byte, int, int...) -
Method in class de.jstacs.algorithms.graphs.tensor.SubTensor
getValue(byte, int, int...) -
Method in class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
getValue(byte, int, int...) -
Method in class de.jstacs.algorithms.graphs.tensor.Tensor
Returns the value for the edge
parents[0],...
getValue() -
Method in class de.jstacs.AnnotatedEntity
Returns the value of the AnnotatedEntity
.
getValue() -
Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier.DoubleTableResult
getValue() -
Method in class de.jstacs.parameters.EnumParameter
getValue() -
Method in class de.jstacs.parameters.FileParameter
getValue() -
Method in class de.jstacs.parameters.MultiSelectionParameter
getValue() -
Method in class de.jstacs.parameters.ParameterSetContainer
getValue() -
Method in class de.jstacs.parameters.RangeParameter
getValue() -
Method in class de.jstacs.parameters.SelectionParameter
getValue() -
Method in class de.jstacs.parameters.SimpleParameter
getValue() -
Method in class de.jstacs.results.DataSetResult
getValue() -
Method in class de.jstacs.results.ImageResult
getValue() -
Method in class de.jstacs.results.ListResult
getValue() -
Method in class de.jstacs.results.SimpleResult
getValue() -
Method in class de.jstacs.results.StorableResult
getValue(Sequence, int) -
Method in interface de.jstacs.sequenceScores.differentiable.logistic.LogisticConstraint
This method returns the value f(seq) used in LogisticDiffSS
getValue(Sequence, int) -
Method in class de.jstacs.sequenceScores.differentiable.logistic.ProductConstraint
getValue() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
Returns the current value of this parameter.
getValue() -
Method in class de.jstacs.utils.galaxy.GalaxyAdaptor.FileResult
getValueFor(String) -
Method in class de.jstacs.parameters.MultiSelectionParameter
Returns the value for the option with key key
.
getValueFor(int) -
Method in class de.jstacs.parameters.MultiSelectionParameter
Returns the value of the option with no.
getValueFromTag(String) -
Method in class de.jstacs.parameters.ParameterSetTagger
This method returns the value of the Parameter
specified by the tag
.
getValueFromTag(String, Class<T>) -
Method in class de.jstacs.parameters.ParameterSetTagger
This method returns the casted value of the Parameter
specified by the tag
.
getValueOfAIC(StatisticalModel, DataSet, int) -
Static method in class de.jstacs.utils.StatisticalModelTester
This method computes the value of Akaikes Information Criterion (AIC).
getValueOfBIC(StatisticalModel, DataSet, int) -
Static method in class de.jstacs.utils.StatisticalModelTester
This method computes the value of the Bayesian Information Criterion
(BIC).
getValues() -
Method in class de.jstacs.parameters.MultiSelectionParameter
Returns the values of all selected options as an array.
getValuesForEachNucleotide(DataSet, int, boolean) -
Method in class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
This method determines a score for each possible starting position in each of the sequences in data
that this position is covered by at least one motif occurrence of the
motif with index index
.
getValuesFromSequence(Sequence, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
This method extracts the values form a sequence.
getVersionInformation() -
Method in class de.jstacs.utils.REnvironment
Returns information about the version of R that is used.
getViterbiPath(int, int, Sequence, SamplingHigherOrderHMM.ViterbiComputation) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
This method returns a viterbi path that is the optimum for the choosen ViterbiComputation method
getViterbiPathFor(int, int, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
getViterbiPathFor(Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
getViterbiPathFor(int, int, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getViterbiPathFor(int, int, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
getViterbiPathsFor(DataSet) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns the viterbi paths and scores for all sequences of the sample data
.
getWeight() -
Method in class de.jstacs.algorithms.graphs.Edge
Returns the weight of the edge.
getWeight(int) -
Method in class de.jstacs.data.DataSet.WeightedDataSetFactory
Returns the weight for the Sequence
with index
index
.
getWeight() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloNode
This method return the weight (length, rate ...) for the incoming edge
getWeight() -
Method in class de.jstacs.utils.ComparableElement
This method returns the weight of the element.
getWeights() -
Method in class de.jstacs.data.DataSet.WeightedDataSetFactory
Returns a copy of the weights for the DataSet
.
getWeights() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method returns a deep copy of the weights for each component.
getWriter() -
Method in class de.jstacs.utils.galaxy.GalaxyAdaptor.Protocol
Returns the PrintWriter
of this protocol
getXmlTag() -
Method in class de.jstacs.algorithms.optimization.termination.AbsoluteValueCondition
Deprecated.
getXmlTag() -
Method in class de.jstacs.algorithms.optimization.termination.AbstractTerminationCondition
This method returns the xml tag that is used in the method AbstractTerminationCondition.toXML()
and
in the constructor AbstractTerminationCondition.AbstractTerminationCondition(StringBuffer)
.
getXmlTag() -
Method in class de.jstacs.algorithms.optimization.termination.CombinedCondition
getXmlTag() -
Method in class de.jstacs.algorithms.optimization.termination.IterationCondition
getXmlTag() -
Method in class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition
getXmlTag() -
Method in class de.jstacs.algorithms.optimization.termination.SmallGradientConditon
getXmlTag() -
Method in class de.jstacs.algorithms.optimization.termination.SmallStepCondition
getXmlTag() -
Method in class de.jstacs.algorithms.optimization.termination.TimeCondition
getXMLTag() -
Method in class de.jstacs.AnnotatedEntity
This method returns a tag used as outer tag of the XML description.
getXMLTag() -
Method in class de.jstacs.classifiers.AbstractClassifier
Returns the String
that is used as tag for the XML representation
of the classifier.
getXMLTag() -
Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier.DoubleTableResult
getXMLTag() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
getXMLTag() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.msp.MSPClassifier
getXMLTag() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifier
getXMLTag() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
getXMLTag() -
Method in class de.jstacs.classifiers.MappingClassifier
getXMLTag() -
Method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
getXMLTag() -
Method in class de.jstacs.parameters.FileParameter
getXMLTag() -
Method in class de.jstacs.parameters.MultiSelectionParameter
getXMLTag() -
Method in class de.jstacs.parameters.ParameterSetContainer
getXMLTag() -
Method in class de.jstacs.parameters.RangeParameter
getXMLTag() -
Method in class de.jstacs.parameters.SelectionParameter
getXMLTag() -
Method in class de.jstacs.parameters.SimpleParameter
getXMLTag() -
Method in class de.jstacs.results.CategoricalResult
getXMLTag() -
Method in class de.jstacs.results.DataSetResult
getXMLTag() -
Method in class de.jstacs.results.ImageResult
getXMLTag() -
Method in class de.jstacs.results.ListResult
getXMLTag() -
Method in class de.jstacs.results.NumericalResult
getXMLTag() -
Method in class de.jstacs.results.StorableResult
getXMLTag() -
Method in class de.jstacs.sampling.AbstractBurnInTest
This method returns the XML tag that is used in
AbstractBurnInTest.toXML()
and
AbstractBurnInTest.AbstractBurnInTest(StringBuffer)
.
getXMLTag() -
Method in class de.jstacs.sampling.VarianceRatioBurnInTest
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTExplainingAwayResidual
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTMutualInformation
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.InhomogeneousMarkov
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Returns the XML-tag for storing this measure
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMExplainingAwayResidual
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMMutualInformation
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
This method returns the XML tag of the instance that is used to build a
XML representation.
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
Returns the XML tag that is used for the class to en- or decode.
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
Returns the XML tag that is used for this model in
DiscreteGraphicalTrainSM.fromXML(StringBuffer)
and DiscreteGraphicalTrainSM.toXML()
.
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousMM
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM.HomCondProb
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.BayesianNetworkTrainSM
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGTrainSM
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhCondProb
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMConstraint
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
Returns the tag for the XML representation.
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method returns the xml tag used in BasicHigherOrderTransition.AbstractTransitionElement.toXML()
.
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
The method returns the XML tag used during saving and loading the transition.
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.BasicPluginTransitionElement
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.DistanceBasedScaledTransitionElement
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ScaledTransitionElement
getXMLTag() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
getXMLTag() -
Method in class de.jstacs.utils.galaxy.GalaxyAdaptor.FileResult
getXMLTag() -
Method in class de.jstacs.utils.galaxy.GalaxyAdaptor.LinkedImageResult
gibbsSampling(int, int, double, Sequence) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
This method implements a sampling step in the sampling procedure
GibbsSamplingModel - Interface in de.jstacs.sampling
This is the interface that any AbstractTrainableStatisticalModel
has to implement if it
should be used in a sampling.
gibbsSamplingStep(int, int, boolean, DataSet, double[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
This method implements the next step(s) in the sampling procedure
goldenRatio(OneDimensionalFunction, double, double, double, double, double) -
Static method in class de.jstacs.algorithms.optimization.Optimizer
Approximates a minimum (not necessary the global) in the interval
[lower,upper]
.
goldenRatio(OneDimensionalFunction, double, double, double) -
Static method in class de.jstacs.algorithms.optimization.Optimizer
Approximates a minimum (not necessary the global) in the interval
[lower,upper]
.
grad -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
The array for storing the gradients for
each parameter
gradient -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
Help array for the gradient
GT -
Static variable in interface de.jstacs.parameters.validation.Constraint
The condition is greater than
GUIProgressUpdater - Class in de.jstacs.utils
This class implements a ProgressUpdater
with a GUI.
GUIProgressUpdater(boolean) -
Constructor for class de.jstacs.utils.GUIProgressUpdater
This is the constructor for a GUIProgressUpdater
.
Overview
Package
Class
Use
Tree
Deprecated
Index
Help
PREV LETTER
NEXT LETTER
FRAMES
NO FRAMES
All Classes
A B C D E F G H I J K L M N O P Q R S T U V W X Z