|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectde.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM
public abstract class HomogeneousTrainSM
This class implements homogeneous models of arbitrary order.
HomogeneousTrainSMParameterSet
Nested Class Summary | |
---|---|
protected class |
HomogeneousTrainSM.HomCondProb
This class handles the (conditional) probabilities of a homogeneous model in a fast way. |
Field Summary | |
---|---|
protected byte |
order
The order of the model. |
protected int[] |
powers
The powers of the alphabet length. |
Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM |
---|
params, trained |
Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel |
---|
alphabets, length |
Constructor Summary | |
---|---|
HomogeneousTrainSM(HomogeneousTrainSMParameterSet params)
Creates a homogeneous model from a parameter set. |
|
HomogeneousTrainSM(StringBuffer stringBuff)
The standard constructor for the interface Storable . |
Method Summary | |
---|---|
protected void |
check(Sequence sequence,
int startpos,
int endpos)
Checks some constraints, these are in general conditions on the AlphabetContainer of a (sub)Sequence
between startpos und endpos . |
protected int |
chooseFromDistr(Constraint distr,
int start,
int end,
double randNo)
Chooses a value in [0,end-start] according to the
distribution encoded in the frequencies of distr between the
indices start and end . |
protected HomogeneousTrainSM.HomCondProb[] |
cloneHomProb(HomogeneousTrainSM.HomCondProb[] p)
Clones the given array of conditional probabilities. |
DataSet |
emitDataSet(int no,
int... length)
Creates a DataSet of a given number of Sequence s from a
trained homogeneous model. |
double |
getLogProbFor(Sequence sequence,
int startpos,
int endpos)
Returns the logarithm of the probability of (a part of) the given sequence given the model. |
byte |
getMaximalMarkovOrder()
This method returns the maximal used Markov order, if possible. |
NumericalResultSet |
getNumericalCharacteristics()
Returns the subset of numerical values that are also returned by SequenceScore.getCharacteristics() . |
protected abstract Sequence |
getRandomSequence(Random r,
int length)
This method creates a random Sequence from a trained homogeneous
model. |
protected abstract double |
logProbFor(Sequence sequence,
int startpos,
int endpos)
This method computes the logarithm of the probability of the given Sequence in the given interval. |
protected void |
set(DGTrainSMParameterSet params,
boolean trained)
Sets the parameters as internal parameters and does some essential computations. |
void |
train(DataSet[] data)
Trains the homogeneous model on all given DataSet s. |
abstract void |
train(DataSet[] data,
double[][] weights)
Trains the homogeneous model using an array of weighted DataSet s. |
Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM |
---|
clone, fromXML, getCurrentParameterSet, getDescription, getESS, getFurtherModelInfos, getXMLTag, isInitialized, setFurtherModelInfos, toString, toXML |
Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel |
---|
getAlphabetContainer, getCharacteristics, getLength, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, train |
Methods inherited from class java.lang.Object |
---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Methods inherited from interface de.jstacs.sequenceScores.statisticalModels.trainable.TrainableStatisticalModel |
---|
train |
Methods inherited from interface de.jstacs.sequenceScores.statisticalModels.StatisticalModel |
---|
getLogPriorTerm |
Methods inherited from interface de.jstacs.sequenceScores.SequenceScore |
---|
getInstanceName |
Field Detail |
---|
protected int[] powers
protected byte order
Constructor Detail |
---|
public HomogeneousTrainSM(HomogeneousTrainSMParameterSet params) throws CloneNotSupportedException, IllegalArgumentException, NonParsableException
params
- the parameter set
CloneNotSupportedException
- if the parameter set could not be cloned
IllegalArgumentException
- if the parameter set is not instantiated
NonParsableException
- if the parameter set is not parsableHomogeneousTrainSMParameterSet
,
DiscreteGraphicalTrainSM.DiscreteGraphicalTrainSM(DGTrainSMParameterSet)
public HomogeneousTrainSM(StringBuffer stringBuff) throws NonParsableException
Storable
.
Creates a new HomogeneousTrainSM
out of its XML representation.
stringBuff
- the XML representation as StringBuffer
NonParsableException
- if the HomogeneousTrainSM
could not be reconstructed
out of the XML representation (the StringBuffer
could
not be parsed)Storable
,
DiscreteGraphicalTrainSM.DiscreteGraphicalTrainSM(StringBuffer)
Method Detail |
---|
public final DataSet emitDataSet(int no, int... length) throws NotTrainedException, IllegalArgumentException, EmptyDataSetException, WrongAlphabetException, WrongSequenceTypeException
DataSet
of a given number of Sequence
s from a
trained homogeneous model.
emitDataSet
in interface StatisticalModel
emitDataSet
in class AbstractTrainableStatisticalModel
no
- the number of Sequence
s that should be in the
DataSet
length
- the length of all Sequence
s or an array of lengths
with the Sequence
with index i
having
length length[i]
DataSet
NotTrainedException
- if the model was not trained
IllegalArgumentException
- if the dimension of length
is neither 1 nor
no
EmptyDataSetException
- if no == 0
WrongSequenceTypeException
- if the Sequence
type is not suitable (for the
AlphabetContainer
)
WrongAlphabetException
- if something is wrong with the alphabetDataSet.DataSet(String, Sequence...)
protected abstract Sequence getRandomSequence(Random r, int length) throws WrongAlphabetException, WrongSequenceTypeException
Sequence
from a trained homogeneous
model.
r
- the random generatorlength
- the length of the Sequence
Sequence
WrongSequenceTypeException
- if the Sequence
type is not suitable (for the
AlphabetContainer
)
WrongAlphabetException
- if something is wrong with the alphabetpublic byte getMaximalMarkovOrder()
StatisticalModel
getMaximalMarkovOrder
in interface StatisticalModel
getMaximalMarkovOrder
in class AbstractTrainableStatisticalModel
public NumericalResultSet getNumericalCharacteristics() throws Exception
SequenceScore
SequenceScore.getCharacteristics()
.
Exception
- if some of the characteristics could not be definedpublic final double getLogProbFor(Sequence sequence, int startpos, int endpos) throws NotTrainedException, Exception
StatisticalModel
StatisticalModel.getLogProbFor(Sequence, int)
by the fact, that the model could be
e.g. homogeneous and therefore the length of the sequences, whose
probability should be returned, is not fixed. Additionally, the end
position of the part of the given sequence is given and the probability
of the part from position startpos
to endpos
(inclusive) should be returned.
length
and the alphabets
define the type of
data that can be modeled and therefore both has to be checked.
sequence
- the given sequencestartpos
- the start position within the given sequenceendpos
- the last position to be taken into account
NotTrainedException
- if the model is not trained yet
Exception
- if the sequence could not be handled (e.g.
startpos >
, endpos
> sequence.length
, ...) by the modelpublic void train(DataSet[] data) throws Exception
DataSet
s.
data
- the given DataSet
s
Exception
- if something went wrongtrain(DataSet[], double[][])
public abstract void train(DataSet[] data, double[][] weights) throws Exception
DataSet
s.
The Sequence
weights in weights[i]
are for the
DataSet
in data[i]
.
data
- the given DataSet
sweights
- the weights
Exception
- if something went wrong, furthermore data.length
has to be weights.length
protected void set(DGTrainSMParameterSet params, boolean trained) throws CloneNotSupportedException, NonParsableException
DiscreteGraphicalTrainSM
fromParameterSet
-methods.
set
in class DiscreteGraphicalTrainSM
params
- the new ParameterSet
trained
- indicates if the model is trained or not
CloneNotSupportedException
- if the parameter set could not be cloned
NonParsableException
- if the parameters of the model could not be parsedprotected void check(Sequence sequence, int startpos, int endpos) throws NotTrainedException, IllegalArgumentException
AlphabetContainer
of a (sub)Sequence
between startpos
und endpos
.
check
in class DiscreteGraphicalTrainSM
sequence
- the Sequence
startpos
- the start position within the Sequence
endpos
- the end position within the Sequence
NotTrainedException
- if the model is not trained
IllegalArgumentException
- if some arguments are wrongDiscreteGraphicalTrainSM.check(Sequence, int, int)
protected final int chooseFromDistr(Constraint distr, int start, int end, double randNo)
[0,end-start]
according to the
distribution encoded in the frequencies of distr
between the
indices start
and end
.
distr
is not changed in the process.
distr
- the distributionstart
- the start indexend
- the end indexrandNo
- a random number in [0,1]
Constraint.getFreq(int)
protected abstract double logProbFor(Sequence sequence, int startpos, int endpos)
Sequence
in the given interval. The method is only used in
StatisticalModel.getLogProbFor(Sequence, int, int)
after
the method check(Sequence, int, int)
has been
invoked.
sequence
- the Sequence
startpos
- the start position within the Sequence
endpos
- the end position within the Sequence
check(Sequence, int, int)
,
StatisticalModel.getLogProbFor(Sequence, int, int)
protected HomogeneousTrainSM.HomCondProb[] cloneHomProb(HomogeneousTrainSM.HomCondProb[] p)
p
- the original conditional probabilities
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |