|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
public interface DifferentiableTransition
This class declares methods that allow for optimizing the parameters numerically using the Optimizer
.
Method Summary | |
---|---|
void |
addGradientForLogPriorTerm(double[] gradient,
int start)
This method computes the gradient of Transition.getLogPriorTerm() for each
parameter of this transition. |
void |
fillParameters(double[] params)
This method allows to fill the parameters of the transition in a given array. |
void |
fillSamplingGroups(int parameterOffset,
LinkedList<int[]> list)
Adds the groups of indexes of those parameters of this transition that should be sampled together in one step of a grouped sampling procedure, each as an int[] , into list . |
double |
getLogScoreAndPartialDerivation(int layer,
int index,
int childIdx,
IntList indices,
DoubleList partDer,
Sequence sequence,
int sequencePosition)
This method allows to compute the logarithm of the score and the gradient for a specific transition. |
int |
getSizeOfEventSpace(int index)
Returns the size of the event space, i.e., the number of possible outcomes, for the random variable of parameter index |
int |
setParameterOffset(int offset)
This method sets the internal offset of the parameter index. |
void |
setParameters(double[] params,
int start)
This method allows to set the parameters of the transition. |
Methods inherited from interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition |
---|
clone, fillTransitionInformation, getChildIdx, getGraphizNetworkRepresentation, getLastContextState, getLogPriorTerm, getLogScoreFor, getMaximalInDegree, getMaximalMarkovOrder, getMaximalNumberOfChildren, getNumberOfChildren, getNumberOfIndexes, getNumberOfStates, hasAnySelfTransitions, initializeRandomly, isAbsoring, setParameters, toString |
Methods inherited from interface de.jstacs.Storable |
---|
toXML |
Method Detail |
---|
int setParameterOffset(int offset)
offset
- the offset
void setParameters(double[] params, int start)
params
- the parametersstart
- the (global) start positionvoid fillParameters(double[] params)
params
- the parametersdouble getLogScoreAndPartialDerivation(int layer, int index, int childIdx, IntList indices, DoubleList partDer, Sequence sequence, int sequencePosition)
layer
- the layer of the matrixindex
- the index encoding the contextchildIdx
- the index of the childindices
- a list for the parameter indicespartDer
- a list for the partial derivationssequencePosition
- the position within the sequencesequence
- the sequence
Transition.getLogScoreFor(int, int, int, Sequence, int)
void addGradientForLogPriorTerm(double[] gradient, int start)
Transition.getLogPriorTerm()
for each
parameter of this transition. The results are added to the array
gradient
beginning at index start
.
gradient
- the array of gradientsstart
- the start index in the gradient
array, where the
partial derivations for the parameters of this Transition
shall be
enteredint getSizeOfEventSpace(int index)
index
index
- the index of the parameter
void fillSamplingGroups(int parameterOffset, LinkedList<int[]> list)
int[]
, into list
.
In most cases, one group should contain the
parameters that are living on a common simplex, e.g. the parameters of one TransitionElement
of this transition. The internal indexes of the parameters are incremeneted by an external parameterOffset
parameterOffset
- the external parameter offsetlist
- the list of sampling groups
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |