|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectde.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
public class BNDiffSMParameterTree
Class for the tree that represents the context of a BNDiffSMParameter
in a
BayesianNetworkDiffSM
.
Nested Class Summary | |
---|---|
class |
BNDiffSMParameterTree.TreeElement
Class for the nodes of a BNDiffSMParameterTree |
Constructor Summary | |
---|---|
BNDiffSMParameterTree(int pos,
int[] contextPoss,
AlphabetContainer alphabet,
int firstParent,
int[] firstChildren)
Creates a new BNDiffSMParameterTree for the parameters at position
pos using the parent positions in contextPoss . |
|
BNDiffSMParameterTree(StringBuffer source)
Recreates a BNDiffSMParameterTree from its XML representation as
returned by toXML() . |
Method Summary | |
---|---|
void |
addCount(Sequence seq,
int start,
double count)
Adds count to the parameter as returned by
getParameterFor(Sequence, int) . |
void |
backward(BNDiffSMParameterTree[] trees,
int[][] order)
Computes the backward-part of the normalization constant starting from this BNDiffSMParameterTree . |
BNDiffSMParameterTree |
clone()
|
Double |
computeGammaNorm()
Computes the Gamma-normalization for the prior. |
void |
copy(BNDiffSMParameterTree parameterTree)
Copies the values of the parameters from another BNDiffSMParameterTree . |
void |
divideByUnfree()
Divides each of the normalized parameters on a simplex by the last BNDiffSMParameter , which is defined not to be free. |
void |
drawKLDivergences(double[] kls,
double[] weights,
double[][][][] contrast,
double samples)
Draws KL-divergences between the distributions given by contrast[i] each weighted by weights[i]
kls.length distributions drawn from a Dirichlet density centered around contrast , i.e. the hyper-parameters
of the Dirichlet density are the probabilities of contrast weighted by samples . |
void |
drawKLDivergences(double weight,
double[] kls,
int startIdx,
int endIdx,
double[][][] contrast,
double samples)
Draws KL-divergences between the distribution given by contrast and
endIdx-startIdx distributions drawn from a Dirichlet density centered around contrast , i.e. the hyper-parameters
of the Dirichlet density are the probabilities of contrast weighted by samples . |
void |
emitSymbol(int[] content)
|
void |
fill(double[] weight,
double[][][][] distribution)
Fills all parameters with the probabilities given in distribution . |
double |
forward(BNDiffSMParameterTree[] trees)
Computes the forward-part of the normalization constant starting from this BNDiffSMParameterTree . |
int |
getFirstParent()
Returns the first parent of the random variable of this BNDiffSMParameterTree in the topological ordering of the network
structure of the enclosing BayesianNetworkDiffSM . |
double |
getKLDivergence(double[][][] ds)
Returns the KL-divergence of the distribution of this BNDiffSMParameterTree and the distribution given by
ds . |
double |
getKLDivergence(double[] weight,
double[][][][] distribution)
Returns the KL-divergence of the distribution of this BNDiffSMParameterTree and a number of distribution given by
ds and weighted by weight |
int |
getNumberOfParents()
Returns the number of parents for the random variable of this BNDiffSMParameterTree in the network structure of the enclosing
BayesianNetworkDiffSM . |
BNDiffSMParameter |
getParameterFor(Sequence seq,
int start)
Returns the BNDiffSMParameter that is responsible for the suffix of
sequence seq starting at position start . |
int[] |
getParameterIndexesForSamplingStep(int step,
int offset)
Returns the indexes of the parameters, incremented by offset , that
shall be sampled in step step of a grouped sampling process. |
double |
getProbFor(Sequence sequence)
Returns the probability of Sequence sequence in this BNDiffSMParameterTree . |
void |
initializeRandomly(double ess)
Initializes the parameters of this BNDiffSMParameterTree randomly. |
void |
insertProbs(double[] probs)
Computes the probabilities for a PWM, i.e. the parameters in the tree have an empty context, and inserts them into probs . |
void |
invalidateNormalizers()
Resets all pre-computed normalization constants. |
boolean |
isLeaf()
Indicates if the random variable of this BNDiffSMParameterTree is a
leaf, i.e. it has no children in the network structure of the enclosing
BayesianNetworkDiffSM . |
LinkedList<BNDiffSMParameter> |
linearizeParameters()
Extracts the BNDiffSMParameter s from the leaves of this tree in
left-to-right order (as specified by the order of the alphabet) and
returns them as a LinkedList . |
void |
normalizeParameters()
Normalizes the parameter values to the corresponding log-probabilities. |
void |
normalizePlugInParameters()
Starts the normalization of the plug-in parameters to the logarithm of the MAP-estimates. |
void |
print()
Prints the structure of this tree. |
void |
setParameterFor(int symbol,
int[][] context,
BNDiffSMParameter par)
Sets the instance of the BNDiffSMParameter for symbol symbol and
context context to BNDiffSMParameter par . |
String |
toString()
|
StringBuffer |
toXML()
Works as defined in Storable . |
Methods inherited from class java.lang.Object |
---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
---|
public BNDiffSMParameterTree(int pos, int[] contextPoss, AlphabetContainer alphabet, int firstParent, int[] firstChildren)
BNDiffSMParameterTree
for the parameters at position
pos
using the parent positions in contextPoss
.
These are used to extract the correct alphabet out of
alphabet
for every context position. The first parent is the
first parent of the random variable at pos
as given by the
topological ordering of the network structure of the enclosing
BayesianNetworkDiffSM
. The first children are the
children the random variable at pos
is the first parent for.
pos
- the position of the random variable of the parameters in the
treecontextPoss
- the positions of the contextalphabet
- the alphabet of the enclosing
BayesianNetworkDiffSM
firstParent
- the first parent of this random variable, or -1
if the random variable has no parentfirstChildren
- the first children of this random variablepublic BNDiffSMParameterTree(StringBuffer source) throws NonParsableException
BNDiffSMParameterTree
from its XML representation as
returned by toXML()
. BNDiffSMParameterTree
does not
implement the Storable
interface to recycle the
AlphabetContainer
of the enclosing
BayesianNetworkDiffSM
, but besides the different
constructor works like any implementation of Storable
.
source
- the XML representation as StringBuffer
NonParsableException
- if the XML code could not be parsedMethod Detail |
---|
public BNDiffSMParameterTree clone() throws CloneNotSupportedException
clone
in class Object
CloneNotSupportedException
public String toString()
toString
in class Object
public void insertProbs(double[] probs) throws Exception
probs
. Used by
BayesianNetworkDiffSM.getPWM()
.
probs
- the array to store the probabilities for a PWM
Exception
- if the tree structure does have a non-empty contextpublic LinkedList<BNDiffSMParameter> linearizeParameters()
BNDiffSMParameter
s from the leaves of this tree in
left-to-right order (as specified by the order of the alphabet) and
returns them as a LinkedList
.
BNDiffSMParameter
s from the leaves in linear orderpublic boolean isLeaf()
BNDiffSMParameterTree
is a
leaf, i.e. it has no children in the network structure of the enclosing
BayesianNetworkDiffSM
.
true
if this tree is a leaf, false
otherwisepublic int getNumberOfParents()
BNDiffSMParameterTree
in the network structure of the enclosing
BayesianNetworkDiffSM
. This corresponds to the length of
the context or the depth of the tree.
public void print()
public BNDiffSMParameter getParameterFor(Sequence seq, int start)
BNDiffSMParameter
that is responsible for the suffix of
sequence seq
starting at position start
.
seq
- the Sequence
start
- the first position in the suffix
BNDiffSMParameter
that is responsible for the suffixpublic void setParameterFor(int symbol, int[][] context, BNDiffSMParameter par)
BNDiffSMParameter
for symbol symbol
and
context context
to BNDiffSMParameter
par
.
symbol
- the symbolcontext
- the contextpar
- the new BNDiffSMParameter
instancepublic void invalidateNormalizers()
public double forward(BNDiffSMParameterTree[] trees) throws RuntimeException
BNDiffSMParameterTree
. This is only possible for roots, i.e.
BNDiffSMParameterTree
s that do not have parents in the network structure
of the enclosing BayesianNetworkDiffSM
.
trees
- the array of all trees as from the enclosing
BayesianNetworkDiffSM
RuntimeException
- if this BNDiffSMParameterTree
is not a rootpublic void backward(BNDiffSMParameterTree[] trees, int[][] order) throws RuntimeException
BNDiffSMParameterTree
. This is only possible for
leaves, i.e. BNDiffSMParameterTree
s that do not have children in the
network structure of the enclosing BayesianNetworkDiffSM
.
trees
- the array of all trees as from the enclosing
BayesianNetworkDiffSM
order
- the topological ordering as returned by
TopSort.getTopologicalOrder(int[][])
RuntimeException
- if this BNDiffSMParameterTree
is not a leafpublic void addCount(Sequence seq, int start, double count)
count
to the parameter as returned by
getParameterFor(Sequence, int)
.
seq
- the sequencestart
- the first position of the suffix of seq
count
- the added countpublic void normalizePlugInParameters()
public void normalizeParameters()
BayesianNetworkDiffSM.getLogNormalizationConstant()
should
return 0.
public void divideByUnfree()
BNDiffSMParameter
, which is defined not to be free. In the log-space this amounts
to subtracting the value of the last BNDiffSMParameter
from all BNDiffSMParameter
s on the
simplex.
public StringBuffer toXML()
Storable
.
Returns an XML representation of this BNDiffSMParameterTree
.
toXML
in interface Storable
BNDiffSMParameterTree
Storable.toXML()
public int getFirstParent()
BNDiffSMParameterTree
in the topological ordering of the network
structure of the enclosing BayesianNetworkDiffSM
.
public void drawKLDivergences(double weight, double[] kls, int startIdx, int endIdx, double[][][] contrast, double samples)
contrast
and
endIdx-startIdx
distributions drawn from a Dirichlet density centered around contrast
, i.e. the hyper-parameters
of the Dirichlet density are the probabilities of contrast
weighted by samples
. The drawn KL-divergences are stored
into kls
between startIndex
and endIndex
(exclusive).
weight
- a weight on the KL-divergenceskls
- the array of KL-divergences which is filledstartIdx
- the first indexendIdx
- the index after the last indexcontrast
- the distribution to check againstsamples
- number of sequences + equivalent sample sizepublic double getKLDivergence(double[][][] ds)
BNDiffSMParameterTree
and the distribution given by
ds
.
ds
- the distribution
public double getKLDivergence(double[] weight, double[][][][] distribution)
BNDiffSMParameterTree
and a number of distribution given by
ds
and weighted by weight
distribution
- the distributionweight
- the weights on the distributions
public void drawKLDivergences(double[] kls, double[] weights, double[][][][] contrast, double samples)
contrast[i]
each weighted by weights[i]
kls.length
distributions drawn from a Dirichlet density centered around contrast
, i.e. the hyper-parameters
of the Dirichlet density are the probabilities of contrast
weighted by samples
. The drawn KL-divergences are added
to the entries of kls
.
kls
- the array of KL-divergences which is filledweights
- the weights on the distributions in contrastcontrast
- the distribution to check againstsamples
- number of sequences + equivalent sample sizepublic void fill(double[] weight, double[][][][] distribution)
distribution
.
distribution
- the distributionweight
- the weights on the distributionspublic void copy(BNDiffSMParameterTree parameterTree)
BNDiffSMParameterTree
.
parameterTree
- the templatepublic void initializeRandomly(double ess)
BNDiffSMParameterTree
randomly.
ess
- the equivalent sample sizepublic Double computeGammaNorm()
public double getProbFor(Sequence sequence)
Sequence
sequence
in this BNDiffSMParameterTree
.
sequence
- the sequence
public int[] getParameterIndexesForSamplingStep(int step, int offset)
offset
, that
shall be sampled in step step
of a grouped sampling process.
step
- the stepoffset
- the offset on the parameter indexes
public void emitSymbol(int[] content)
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |