|
||||||||||
PREV LETTER NEXT LETTER | FRAMES NO FRAMES All Classes |
true
if for test and train dataset the sequences of
the non-reference classes have the same length as the corresponding
sequence of the reference class.
SamplingScoreBasedClassifier.burnInTest
and then samples the number of
stationary steps as set in SamplingScoreBasedClassifier.params
.
ClassifierAssessmentAssessParameterSet
that
must be used to call the method assess( ... )
of a
Sampled_RepeatedHoldOutExperiment
.Sampled_RepeatedHoldOutAssessParameterSet
with
empty parameter values.
Storable
.
Sampled_RepeatedHoldOutAssessParameterSet
with
given parameter values.
ClassifierAssessment
that partitions the data
of a user-specified reference class (typically the smallest class) and
samples non-overlapping for all other classes, so that one gets the same
number of sequences (and the same lengths of the sequences) in each train and
test dataset.Sampled_RepeatedHoldOutExperiment
from an array of
AbstractClassifier
s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers.
Sampled_RepeatedHoldOutExperiment
from a set of
AbstractClassifier
s.
Sampled_RepeatedHoldOutExperiment
from a set of
TrainableStatisticalModel
s.
AbstractClassifier
s and those constructed using the given
TrainableStatisticalModel
s by a
Sampled_RepeatedHoldOutExperiment
.
seq
using the internal parameters.
DifferentiableStatisticalModel
s that can be used for
Metropolis-Hastings sampling in a SamplingScoreBasedClassifier
.LogGenDisMixFunction
using the
Metropolis-Hastings algorithm.SamplingGenDisMixClassifier
using the external parameters
params
, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, weights beta
for the three components of the
LogGenDisMixFunction
, i.e., likelihood, conditional likelihood, and prior,
and scoring functions that model the distribution for each of the classes.
SamplingGenDisMixClassifier
using the external parameters
params
, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, a learning principle,
and scoring functions that model the distribution for each of the classes.
SamplingGenDisMixClassifier
from its XML-representation
ParameterSet
to instantiate a SamplingGenDisMixClassifier
.SamplingGenDisMixClassifierParameterSet
.
SamplingGenDisMixClassifierParameterSet
.
SamplingGenDisMixClassifierParameterSet
with a grouped sampling scheme, sampling all parameters
(and not only the free ones), and adaption of the variance.
Storable
.
AbstractHMM
using a sampling strategy.AbstractHMM
using a sampling strategy.
Storable
.
Storable
.
SamplingDifferentiableStatisticalModel
s by the Metropolis-Hastings algorithm.Storable
.
SamplingScoreBasedClassifier
using the parameters in params
,
a specified BurnInTest
(or null
for no burn-in test), a set of sampling variances,
which may be different for each of the classes (in analogy to equivalent sample size for the Dirichlet distribution),
and set set of SamplingDifferentiableStatisticalModel
s for each of the classes.
SamplingComponent
that handles storing and loading sampled parameters values
to and from files.SamplingScoreBasedClassifier.DiffSMSamplingComponent
that uses temporary files
with name prefix outfilePrefix
to store sampled parameters.
ParameterSet
to instantiate a SamplingScoreBasedClassifier
.SamplingScoreBasedClassifierParameterSet
.
SamplingScoreBasedClassifierParameterSet
with a grouped sampling scheme, sampling all parameters
(and not only the free ones), and adaption of the variance.
SamplingComponent.extendSampling(int, boolean)
.
AbstractMixtureTrainSM.initModelForSampling(int)
.
Sequence
seq
beginning at position
start
.
sequence
.
DataSet
to a file f
.
Sequence
s including their
SequenceAnnotation
s into a OutputStream
.
StringBuffer
representing these as XML.
Storable
.
DifferentiableSequenceScore
s are used during the parallel computation.
DifferentiableSequenceScore
s.
DifferentiableSequenceScore
based classifier.ScoreClassifier
from a given
ScoreClassifierParameterSet
and DifferentiableSequenceScore
s .
Storable
.
Parameter
s for any
ScoreClassifier
.ScoreClassifierParameterSet
with empty parameter
values.
Storable
.
SamplingDifferentiableStatisticalModel
s
SelectionParameter
.
SelectionParameter
.
SelectionParameter
from an array of
ParameterSet
s.
SelectionParameter
from an array of
Class
es of ParameterSet
s.
Storable
.
SensitivityForFixedSpecificity
with empty parameter values.
SensitivityForFixedSpecificity
with given specificity
.
Storable
.
LogPrior
that defines a Gaussian prior on the parameters
of a set of DifferentiableStatisticalModel
s
and a set of class parameters.SeparateGaussianLogPrior
from a set of base
variances vars
, a set of class variances
classVars
and a set of class means classMus
.
Storable
.
LogPrior
that defines a Laplace prior on the parameters
of a set of DifferentiableStatisticalModel
s
and a set of class parameters.SeparateLaplaceLogPrior
from a set of base
variances vars
, a set of class variances
classVars
and a set of class means classMus
.
Storable
.
SeparateLogPrior
using the class-specific base
variances vars
, the variances classVars
and the
means classMus
for the class parameters.
Storable
.
Sequence
with the given AlphabetContainer
and the given annotation, but without the content.
Sequence
s.Sequence.CompositeSequence
for Sequence
s with a simple AlphabetContainer
.
DataSet
of Sequence.CompositeSequence
s.
Sequence.RecursiveSequence
on the Sequence
seq
with the AlphabetContainer
alphabet
and the annotation annotation
.
Sequence.RecursiveSequence
on the Sequence
seq
with the AlphabetContainer
alphabet
using the annotation of the given Sequence
.
DataSet
of Sequence.SubSequence
s of defined length.
Sequence.SubSequence
of
defined length for Sequence
s with a simple
AlphabetContainer
.
Sequence
.SequenceAnnotation
of type type
with
identifier identifier
and additional annotation (that does
not fit the SequenceAnnotation
definitions) given as a
Result
result
.
SequenceAnnotation
of type type
with
identifier identifier
and additional annotation (that does
not fit the SequenceAnnotation
definitions) given as an array of
Result
s results
.
SequenceAnnotation
of type type
with
identifier identifier
and additional annotation (that does
not fit the SequenceAnnotation
definitions) given as an array of
Result
s additionalAnnotation
.
SequenceAnnotation
of type type
with
identifier identifier
and additional annotation (that does
not fit the SequenceAnnotation
definitions) given as a
Collection
of Result
s results
.
Storable
.
AbstractStringExtractor
to annotate a String
which will be parsed to a Sequence
.RecyclableSequenceEnumerator
on user-specified Sequence
s.Sequence
s sequences
.
Collection
of Sequence
s sequences
.
SequenceIterator
with maximal length
.
DataSet
from a SequenceIterator
.
ParameterSet
containing all parameters necessary
to construct an Object
that implements
InstantiableFromParameterSet
.InstanceParameterSet
having empty parameter values.
SequenceScoringParameterSet
having empty parameter
values.
Storable
.
SequenceScoringParameterSet
from an
AlphabetContainer
and the length of a sequence.
SequenceScoringParameterSet
for an object that can
handle sequences of variable length and with the
AlphabetContainer
alphabet
.
AbstractTerminationCondition.parameter
.
AnnotatedEntity
at index idx
with
the AnnotatedEntity
entity/code>
set(boolean, DifferentiableSequenceScore...) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.CompositeLogPrior
set(boolean, DifferentiableSequenceScore...) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.LogPrior
Resets all pre-computed values to their initial values using the
DifferentiableSequenceScore
s funs
.
set(boolean, DifferentiableSequenceScore...) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateLogPrior
set(int, Parameter) -
Method in class de.jstacs.parameters.ParameterSet.ParameterList
set(DGTrainSMParameterSet, boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
Sets the parameters as internal parameters and does some essential
computations.
set(DGTrainSMParameterSet, boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousMM
set(DGTrainSMParameterSet, boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM
set(DGTrainSMParameterSet, boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.BayesianNetworkTrainSM
set(DGTrainSMParameterSet, boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGTrainSM
set(DGTrainSMParameterSet, boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM
setAlpha(double) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Sets the parameter of the Dirichlet distribution which is used when you
invoke train
to init the gammas.
setBounds(int[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.SequenceIterator
This method sets the bounds for each position.
setClassWeights(boolean, double...) -
Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
Sets new class weights.
setClassWeights(boolean, double[], int) -
Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
Sets new class weights.
setCurrentLength(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.CombinationIterator
This method sets the current used number of selected elements.
setCurrentSamplingIndex(int) -
Method in class de.jstacs.sampling.AbstractBurnInTest
setCurrentSamplingIndex(int) -
Method in interface de.jstacs.sampling.BurnInTest
This method sets the value of the current sampling.
setCurrentSamplingIndex(int) -
Method in class de.jstacs.sampling.SimpleBurnInTest
Deprecated.
setDataAndWeights(DataSet[], double[][]) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
setDataAndWeights(DataSet[], double[][]) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractOptimizableFunction
setDataAndWeights(DataSet[], double[][]) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.OneDataSetLogGenDisMixFunction
setDataAndWeights(DataSet[], double[][]) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.OptimizableFunction
This method sets the data set and the sequence weights to be used.
setDefault(Object) -
Method in class de.jstacs.parameters.AbstractSelectionParameter
Sets the default value of this AbstractSelectionParameter
to
defaultValue
.
setDefault(Object) -
Method in class de.jstacs.parameters.EnumParameter
setDefault(Object) -
Method in class de.jstacs.parameters.FileParameter
setDefault(Object) -
Method in class de.jstacs.parameters.MultiSelectionParameter
setDefault(Object) -
Method in class de.jstacs.parameters.Parameter
Sets the default value of the Parameter
to
defaultValue
.
setDefault(Object) -
Method in class de.jstacs.parameters.ParameterSetContainer
setDefault(Object) -
Method in class de.jstacs.parameters.RangeParameter
setDefault(Object) -
Method in class de.jstacs.parameters.SelectionParameter
setDefault(Object) -
Method in class de.jstacs.parameters.SimpleParameter
setDefaultSelected(int[]) -
Method in class de.jstacs.parameters.MultiSelectionParameter
Sets the default selection of this MultiSelectionParameter
to
defaultSelection
.
setDeleteOnExit(boolean) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
If set to true
(which is the default), the temporary files for storing sampled parameter
values are deleted on exit of the program.
setEss(double) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DGTrainSMParameterSet
This method can be used to set the ess (equivalent sample
size) of this parameter set.
setESS(double) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.StructureLearner
This method sets the ess (equivalent sample size) of
the StructureLearner
.
setExpLambda(int, double) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMConstraint
Sets the exponential value of
.
setExtension(String) -
Method in class de.jstacs.utils.galaxy.GalaxyAdaptor.FileResult
Sets the filename extension
setFilename(String) -
Method in class de.jstacs.utils.galaxy.GalaxyAdaptor.FileResult
Sets the file
setForwardProb(double) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
This method can be used to set the forward strand probability.
setFrameParameterOptimization(boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
This method enables the user to choose whether the frame parameters should be optimized or not.
setFreqs(String[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhCondProb
This method is used to restore the values of a Gibbs Sampling run.
setFurtherInformation(StringBuffer) -
Method in class de.jstacs.sampling.AbstractBurnInTest
This method sets further information for the AbstractBurnInTest
.
setFurtherInformation(StringBuffer) -
Method in class de.jstacs.sampling.VarianceRatioBurnInTest
setFurtherModelInfos(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
This method replaces the internal model information with those from a
StringBuffer
.
setFurtherModelInfos(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousMM
setFurtherModelInfos(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM
setFurtherModelInfos(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGModelForGibbsSampling
setHelp(String) -
Method in class de.jstacs.utils.galaxy.GalaxyAdaptor
Sets the help, i.e., a more detailed description of the program
to help
.
setHelp(File) -
Method in class de.jstacs.utils.galaxy.GalaxyAdaptor
Sets the help, i.e., a more detailed description of the program
to the contents of helpfile
.
setHiddenParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
This method sets the hidden parameters of the model.
setId(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloNode
This method set the ID of the current PhyloNode
The ID should be unique in the PhyloTree
setIndexOfDescendantTransitionElement(int, int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method sets the index of the descendant transition element for the child with index index
.
setInitParameters(double[]) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
Sets the initial parameters of the sampling to parameters
.
setLambda(int, double) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMConstraint
Sets the value of
.
setLastDistance(double) -
Method in class de.jstacs.algorithms.optimization.ConstantStartDistance
setLastDistance(double) -
Method in class de.jstacs.algorithms.optimization.LimitedMedianStartDistance
setLastDistance(double) -
Method in interface de.jstacs.algorithms.optimization.StartDistanceForecaster
Sets the last used distance.
setLinear(boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
If set to true, the probabilities are mapped to colors by directly, otherwise
a logistic mapping is used to emphasize deviations from the uniform distribution.
setMax(int) -
Method in class de.jstacs.utils.DefaultProgressUpdater
setMax(int) -
Method in class de.jstacs.utils.GUIProgressUpdater
setMax(int) -
Method in class de.jstacs.utils.NullProgressUpdater
setMax(int) -
Method in interface de.jstacs.utils.ProgressUpdater
Sets the maximal value that will be set by ProgressUpdater.setValue(int)
, so a
value of max indicates the end of the supervised method call.
setMeasure(AbstractPerformanceMeasure) -
Method in class de.jstacs.classifiers.performanceMeasures.PerformanceMeasureParameterSet
Sets the given measure as content of the internally last ParameterSetContainer
.
setModelType(String) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters.BayesianNetworkTrainSMParameterSet
This method allows a simple change of the model type.
setMotifLength(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.GaussianLikePositionPrior
setMotifLength(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.PositionPrior
Sets the length of the current motif.
setName(String) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloNode
This method set a name for the current instance
setNumberOfStarts(int) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
Sets the number of starts to i
setNumberOfThreads(int) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
This method allows to set the number of threads used while optimization.
setNumberOfThreads(int) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifierParameterSet
This method set the number of threads used during optimization.
setOffset() -
Method in class de.jstacs.utils.NullProgressUpdater
After NullProgressUpdater.setOffset()
is called the current value
will be added to every value set by
NullProgressUpdater.setValue(int)
.
setOutputStream(OutputStream) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
Sets the OutputStream
that is used e.g. for writing information
during training.
setOutputStream(OutputStream) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.DifferentiableStatisticalModelWrapperTrainSM
Sets the OutputStream that is used e.g. for writing information while training.
setOutputStream(OutputStream) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM
Sets the OutputStream
for the model.
setOutputStream(OutputStream) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
Sets the OutputStream
that is used e.g. for writing information
while training.
setOutputStream(OutputStream) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Sets the OutputStream
that is used e.g. for writing information
while training.
setParameter(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
setParameter(double[], int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.DifferentiableEmission
This method sets the internal parameters using the given global parameter array, the global offset of the HMM and the internal offset.
setParameter(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
setParameter(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
setParameter(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
setParameterFor(int, int[][], BNDiffSMParameter) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
Sets the instance of the BNDiffSMParameter
for symbol symbol
and
context context
to BNDiffSMParameter
par
.
setParameterOffset(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
setParameterOffset(int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.DifferentiableEmission
This method sets the internal parameter offset and returns the new parameter offset for further use.
setParameterOffset(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
setParameterOffset(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
setParameterOffset(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
setParameterOffset(int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.DifferentiableTransition
This method sets the internal offset of the parameter index.
setParameterOffset(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.TransitionElement
This method sets the internal TransitionElement.offset
used for several methods (cf. see tags).
setParameterOffset(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
setParameterOffset() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
This method allows to set the parameter offset in each internally used TransitionElement
.
setParameterOptimization(boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
This method enables the user to choose whether the parameters should be optimized or not.
setParameterOptimization(boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
This method allows the user to specify whether the parameters should be
optimized or not.
setParameters(double[], int) -
Method in interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore
This method sets the internal parameters to the values of
params
between start
and
start + DifferentiableSequenceScore.getNumberOfParameters()
- 1
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.differentiable.logistic.LogisticDiffSS
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.differentiable.UniformDiffSS
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
setParameters(double, double, double) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
this method can be used to set the parameters even if the parameters are not allowed to be optimized.
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.UniformDurationDiffSM
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MultiDimensionalSequenceWrapperDiffSM
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
setParameters(Emission) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
setParameters(Emission) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
setParameters(Emission) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.Emission
Set values of parameters of the instance to the value of the parameters of the given instance.
setParameters(Emission) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.MixtureEmission
setParameters(Emission) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
setParameters(Emission) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
setParameters(BasicHigherOrderTransition.AbstractTransitionElement) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
Set values of parameters of the instance to the value of the parameters of the given instance.
setParameters(Transition) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
setParameters(double[], int) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.DifferentiableTransition
This method allows to set the parameters of the transition.
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.TransitionElement
This method sets the internal parameters to the values of
params
beginning at index start
.
setParameters(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
setParameters(Transition) -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
Set values of parameters of the instance to the value of the parameters of the given instance.
setParametersForFunction(int, double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
This method allows to set the parameters for specific functions.
setParams(double[]) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
setParams(int) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
This method sets the parameters for thread index
setParams(int) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.DiffSSBasedOptimizableFunction
setParams(double[]) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.OptimizableFunction
Sets the current values as parameters.
setParams(double[], int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
This method allows to set the new parameters using a specific offset.
setParamsStarts() -
Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
This method set the value of the array IndependentProductDiffSS.startIndexOfParams
.
setParent(ParameterSet) -
Method in class de.jstacs.parameters.Parameter
Sets the reference of the enclosing ParameterSet
of this
Parameter
to parent
.
setParent(ParameterSetContainer) -
Method in class de.jstacs.parameters.ParameterSet
Sets the enclosing ParameterSetContainer
of this
ParameterSet
to parent
.
setParser(SequenceAnnotationParser) -
Method in class de.jstacs.results.DataSetResult
Sets the SequenceAnnotationParser
that can be used to
write this DataSetResult
including annotations on the contained Sequence
s
to a file
setPath(String) -
Method in class de.jstacs.utils.galaxy.GalaxyAdaptor.FileResult
Sets the path of the directory containing the file to path
setPlugInParameters(int, boolean, DataSet[], double[][]) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
Computes and sets the plug-in parameters (MAP estimated parameters) from
data
using weights
.
setPrior(LogPrior) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
This method set a new prior that should be used for optimization.
setRangeable(boolean) -
Method in class de.jstacs.parameters.AbstractSelectionParameter
Sets the value returned by AbstractSelectionParameter.isRangeable()
to
rangeable
.
setRangeable(boolean) -
Method in class de.jstacs.parameters.SimpleParameter
Sets the value returned by SimpleParameter.isRangeable()
to
rangeable
.
setRootValue(int, double) -
Method in class de.jstacs.algorithms.graphs.tensor.AsymmetricTensor
setRootValue(int, double) -
Method in class de.jstacs.algorithms.graphs.tensor.SubTensor
setRootValue(int, double) -
Method in class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
setRootValue(int, double) -
Method in class de.jstacs.algorithms.graphs.tensor.Tensor
Sets the value val
for the root node child
.
setSeed(long) -
Method in class de.jstacs.utils.random.RandomNumberGenerator
setSelected(String, boolean) -
Method in class de.jstacs.parameters.MultiSelectionParameter
Sets the selection of the option with key key
to the value
of selected
.
setSelected(int, boolean) -
Method in class de.jstacs.parameters.MultiSelectionParameter
Sets the selection of option with no.
setShape(String) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
Sets the graphviz shape of the node that uses this emission to some non-standard value
(standard is "house").
setShiftCorrection(boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
Enables or disables the phase shift correction.
setStatisticForHyperparameters(int[], double[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
setStatisticForHyperparameters(int[], double[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
setStatisticForHyperparameters(int[], double[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
setStatisticForHyperparameters(int[], double[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
setStatisticForHyperparameters(int[], double[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.VariableLengthMixtureDiffSM
setStatisticForHyperparameters(int[], double[]) -
Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.VariableLengthDiffSM
This method sets the hyperparameters for the model parameters by
evaluating the given statistic.
setStringToBeParsed(String) -
Method in class de.jstacs.io.SymbolExtractor
Sets a new String
to be parsed.
setTempDir(File) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
Sets the directory for parameter files set in this SamplingScoreBasedClassifier
.
setThreadIndependentParameters() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
This method allows to set thread independent parameters.
setThreadIndependentParameters() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.DiffSSBasedOptimizableFunction
setThresholdClassWeights(boolean, double) -
Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
Sets a new threshold for 2-class-classifiers.
setTrainData(DataSet) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method is invoked by the train
-method and sets for a
given sample the sample that should be used for train
.
setTrainData(DataSet) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.MixtureTrainSM
setTrainData(DataSet) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
setTrainData(DataSet) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
setValidator(ParameterValidator) -
Method in class de.jstacs.parameters.SimpleParameter
Sets a new ParameterValidator
for this SimpleParameter
.
setValue(byte, double, int, int...) -
Method in class de.jstacs.algorithms.graphs.tensor.AsymmetricTensor
setValue(byte, double, int, int...) -
Method in class de.jstacs.algorithms.graphs.tensor.SubTensor
setValue(byte, double, int, int...) -
Method in class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
Sets the value if it is bigger than the current value and keeps the
parents information.
setValue(byte, double, int, int...) -
Method in class de.jstacs.algorithms.graphs.tensor.Tensor
Sets the value for the edge
parents[0],...
setValue(Object) -
Method in class de.jstacs.parameters.EnumParameter
setValue(Object) -
Method in class de.jstacs.parameters.FileParameter
setValue(Object) -
Method in class de.jstacs.parameters.MultiSelectionParameter
setValue(Object) -
Method in class de.jstacs.parameters.Parameter
Sets the value of this Parameter
to value
.
setValue(Object) -
Method in class de.jstacs.parameters.ParameterSetContainer
setValue(Object) -
Method in class de.jstacs.parameters.RangeParameter
setValue(Object) -
Method in class de.jstacs.parameters.SelectionParameter
Sets the selected value to the one that is specified by the key
value
.
setValue(Object) -
Method in class de.jstacs.parameters.SimpleParameter
setValue(double) -
Method in class de.jstacs.sampling.AbstractBurnInTest
setValue(double) -
Method in interface de.jstacs.sampling.BurnInTest
This method can be used to fill the internal memory with the values that
will be used to determine the length of the burn-in phase.
setValue(double) -
Method in class de.jstacs.sampling.SimpleBurnInTest
Deprecated.
setValue(double) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
Sets the current value of this parameter.
setValue(int) -
Method in class de.jstacs.utils.DefaultProgressUpdater
setValue(int) -
Method in class de.jstacs.utils.GUIProgressUpdater
setValue(int) -
Method in class de.jstacs.utils.NullProgressUpdater
setValue(int) -
Method in interface de.jstacs.utils.ProgressUpdater
Sets the current value the supervised process has reached.
setValue(int) -
Method in class de.jstacs.utils.TimeLimitedProgressUpdater
setValueFromTag(String, Object) -
Method in class de.jstacs.parameters.ParameterSetTagger
This method allows to easily set the value of a parameter defined by the tag.
setValues(String) -
Method in class de.jstacs.parameters.RangeParameter
Sets a list of values from a String
containing a space separated
list of values.
setValues(Object, int, Object, RangeParameter.Scale) -
Method in class de.jstacs.parameters.RangeParameter
Sets the values of this RangeParameter
as a range of values,
specified by a start value, a last value, a number of steps between these
values (without the last value) and a scale in that the values between
the first and the last value are chosen.
setValuesInLogScale(boolean, double, Object, int, Object) -
Method in class de.jstacs.parameters.RangeParameter
This method enables you to set a list of values in an easy manner.
setWeight(double) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloNode
This method set the weight (length, rate ...) for the incoming edge
setWeights(double...) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
This method set the weights for the summand of the function.
setWeights(double...) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Sets the weights of each component.
shallBeRanged() -
Method in class de.jstacs.parameters.RangeParameter
Returns one of LIST, RANGE
or NO
depending on
the input used to specify this RangeParameter
.
SharedStructureClassifier - Class in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared
This class enables you to learn the structure on all classes of the
classifier together.
SharedStructureClassifier(int, StructureLearner.ModelType, byte, StructureLearner.LearningType, FSDAGTrainSM...) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureClassifier
Creates a new SharedStructureClassifier
from given
FSDAGTrainSM
s.
SharedStructureClassifier(StringBuffer) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureClassifier
The standard constructor for the interface Storable
.
SharedStructureMixture - Class in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared
This class handles a mixture of models with the same structure that is
learned via EM.
SharedStructureMixture(FSDAGTrainSM[], StructureLearner.ModelType, byte, int, double, TerminationCondition) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
Creates a new SharedStructureMixture
instance which estimates the
component probabilities/weights.
SharedStructureMixture(FSDAGTrainSM[], StructureLearner.ModelType, byte, int, double[], double, TerminationCondition) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
Creates a new SharedStructureMixture
instance with fixed
component weights.
SharedStructureMixture(FSDAGTrainSM[], StructureLearner.ModelType, byte, int, boolean, double[], double, TerminationCondition) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
Creates a new SharedStructureMixture
instance with all relevant
values.
SharedStructureMixture(StringBuffer) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
The standard constructor for the interface Storable
.
shortcut -
Variable in class de.jstacs.classifiers.differentiableSequenceScoreBased.DiffSSBasedOptimizableFunction
These shortcuts indicate the beginning of a new part in the parameter vector.
ShortSequence - Class in de.jstacs.data.sequences
This class is for sequences with the alphabet symbols encoded as
shorts
s and can therefore be used for discrete
AlphabetContainer
s with alphabets that use many different symbols.
ShortSequence(AlphabetContainer, short[]) -
Constructor for class de.jstacs.data.sequences.ShortSequence
Creates a new ShortSequence
from an array of short
-
encoded alphabet symbols.
ShortSequence(AlphabetContainer, String) -
Constructor for class de.jstacs.data.sequences.ShortSequence
Creates a new ShortSequence
from a String
representation
using the default delimiter.
ShortSequence(AlphabetContainer, SequenceAnnotation[], String, String) -
Constructor for class de.jstacs.data.sequences.ShortSequence
Creates a new ShortSequence
from a String
representation
using the delimiter delim
.
ShortSequence(AlphabetContainer, SequenceAnnotation[], SymbolExtractor) -
Constructor for class de.jstacs.data.sequences.ShortSequence
Creates a new ShortSequence
from a SymbolExtractor
.
shouldBeNormalized() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifierParameterSet
This method indicates if a normalization shall be used while
optimization.
showImage(String, BufferedImage) -
Static method in class de.jstacs.utils.REnvironment
Enables you to show an image.
showImage(String, BufferedImage, int) -
Static method in class de.jstacs.utils.REnvironment
Enables you to show an image.
SignificantMotifOccurrencesFinder - Class in de.jstacs.motifDiscovery
This class enables the user to predict motif occurrences given a specific significance level.
SignificantMotifOccurrencesFinder(MotifDiscoverer, SignificantMotifOccurrencesFinder.RandomSeqType, boolean, int, double) -
Constructor for class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
This constructor creates an instance of SignificantMotifOccurrencesFinder
that uses the given SignificantMotifOccurrencesFinder.RandomSeqType
to determine the siginificance level.
SignificantMotifOccurrencesFinder(MotifDiscoverer, SignificantMotifOccurrencesFinder.RandomSeqType, SignificantMotifOccurrencesFinder.JoinMethod, boolean, int, double) -
Constructor for class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
This constructor creates an instance of SignificantMotifOccurrencesFinder
that uses the given SignificantMotifOccurrencesFinder.RandomSeqType
to determine the siginificance level.
SignificantMotifOccurrencesFinder(MotifDiscoverer, DataSet, double[], double) -
Constructor for class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
This constructor creates an instance of SignificantMotifOccurrencesFinder
that uses a DataSet
to determine the siginificance level.
SignificantMotifOccurrencesFinder(MotifDiscoverer, SignificantMotifOccurrencesFinder.JoinMethod, DataSet, double[], double) -
Constructor for class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
This constructor creates an instance of SignificantMotifOccurrencesFinder
that uses a DataSet
to determine the siginificance level.
SignificantMotifOccurrencesFinder.JoinMethod - Interface in de.jstacs.motifDiscovery
Interface for methods that combine several profiles over the same sequence
into one common profile
SignificantMotifOccurrencesFinder.RandomSeqType - Enum in de.jstacs.motifDiscovery
SignificantMotifOccurrencesFinder.SumOfProbabilities - Class in de.jstacs.motifDiscovery
Joins several profiles containing log-probabilities into one profile containing
the logarithm of the sum of the probabilities of the single profiles.
SignificantMotifOccurrencesFinder.SumOfProbabilities() -
Constructor for class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder.SumOfProbabilities
SilentEmission - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions
This class implements a silent emission which is used to create silent states.
SilentEmission() -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
The main constructor.
SilentEmission(StringBuffer) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
The standard constructor for the interface Storable
.
SimpleBurnInTest - Class in de.jstacs.sampling
Deprecated. since this burn test ignore the data coming from the sampling, it might be problematic to use this test
SimpleBurnInTest(int) -
Constructor for class de.jstacs.sampling.SimpleBurnInTest
Deprecated. This is the main constructor that creates an instance of
SimpleBurnInTest
with fixed burn-in length.
SimpleBurnInTest(StringBuffer) -
Constructor for class de.jstacs.sampling.SimpleBurnInTest
Deprecated. The standard constructor for the interface Storable
.
SimpleCosts - Class in de.jstacs.algorithms.alignment.cost
Class for simple costs with costs
match
for a match,
mismatch
for a mismatch, and
gap
for a gap (of length 1).
SimpleCosts(double, double, double) -
Constructor for class de.jstacs.algorithms.alignment.cost.SimpleCosts
Creates a new instance of simple costs with costs
match
for a match,
mismatch
for a mismatch, and
gap
for a gap (of length 1).
SimpleDifferentiableState - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states
This class implements a State
based on Emission
that allows to reuse Emission
s for different State
s.
SimpleDifferentiableState(DifferentiableEmission, String, boolean) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleDifferentiableState
This is the constructor of a SimpleState
.
SimpleDiscreteSequence - Class in de.jstacs.data.sequences
This is the main class for any discrete sequence.
SimpleDiscreteSequence(AlphabetContainer, SequenceAnnotation[]) -
Constructor for class de.jstacs.data.sequences.SimpleDiscreteSequence
This constructor creates a new SimpleDiscreteSequence
with the
AlphabetContainer
container
and the annotation
annotation
but without the content.
SimpleGaussianSumLogPrior - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior
This class implements a prior that is a product of Gaussian distributions
with mean 0 and equal variance for each parameter.
SimpleGaussianSumLogPrior(double) -
Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SimpleGaussianSumLogPrior
Creates a new SimpleGaussianSumLogPrior
with mean 0 and variance
sigma
for all parameters, including the class parameters.
SimpleGaussianSumLogPrior(StringBuffer) -
Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SimpleGaussianSumLogPrior
The standard constructor for the interface Storable
.
SimpleHistory - Class in de.jstacs.motifDiscovery.history
This class implements a simple history that has a limited memory that will be
used cyclicly.
SimpleHistory(int) -
Constructor for class de.jstacs.motifDiscovery.history.SimpleHistory
This constructor creates a simple history with limited memory.
SimpleHistory(int, boolean, boolean, boolean) -
Constructor for class de.jstacs.motifDiscovery.history.SimpleHistory
This constructor creates a simple history with limited memory.
SimpleHistory(StringBuffer) -
Constructor for class de.jstacs.motifDiscovery.history.SimpleHistory
This is the constructor for the interface Storable
.
SimpleParameter - Class in de.jstacs.parameters
Class for a "simple" parameter.
SimpleParameter(StringBuffer) -
Constructor for class de.jstacs.parameters.SimpleParameter
The standard constructor for the interface Storable
.
SimpleParameter(DataType, String, String, boolean) -
Constructor for class de.jstacs.parameters.SimpleParameter
Constructor for a SimpleParameter
without
ParameterValidator
.
SimpleParameter(DataType, String, String, boolean, Object) -
Constructor for class de.jstacs.parameters.SimpleParameter
Constructor for a SimpleParameter
without
ParameterValidator
but with a default value.
SimpleParameter(DataType, String, String, boolean, ParameterValidator) -
Constructor for class de.jstacs.parameters.SimpleParameter
Constructor for a SimpleParameter
with a
ParameterValidator
.
SimpleParameter(DataType, String, String, boolean, ParameterValidator, Object) -
Constructor for class de.jstacs.parameters.SimpleParameter
Constructor for a SimpleParameter
with validator and default
value.
SimpleParameter.DatatypeNotValidException - Exception in de.jstacs.parameters
Class for an Exception
that can be thrown if the provided
int
-value that represents a data type is not one of the
values defined in DataType
.
SimpleParameter.DatatypeNotValidException(String) -
Constructor for exception de.jstacs.parameters.SimpleParameter.DatatypeNotValidException
Creates a new SimpleParameter.DatatypeNotValidException
with an error
message.
SimpleParameter.IllegalValueException - Exception in de.jstacs.parameters
This exception is thrown if a parameter is not valid.
SimpleParameter.IllegalValueException(String) -
Constructor for exception de.jstacs.parameters.SimpleParameter.IllegalValueException
Creates a new SimpleParameter.IllegalValueException
with the reason of the
exception reason
as error message.
SimpleParameterSet - Class in de.jstacs.parameters
Class for a ParameterSet
that is constructed from an array of Parameter
s.
SimpleParameterSet(Parameter...) -
Constructor for class de.jstacs.parameters.SimpleParameterSet
Creates a new SimpleParameterSet
from an array of Parameter
s.
SimpleParameterSet(StringBuffer) -
Constructor for class de.jstacs.parameters.SimpleParameterSet
The standard constructor for the interface Storable
.
SimpleResult - Class in de.jstacs.results
Abstract class for a Result
with a value of a primitive data type or
String
.
SimpleResult(String, String, DataType) -
Constructor for class de.jstacs.results.SimpleResult
The main constructor which takes the main information of a result.
SimpleResult(StringBuffer) -
Constructor for class de.jstacs.results.SimpleResult
This is the constructor for Storable
.
SimpleSamplingState - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states
This class implements a state that can be used for a HMM that obtains its parameters from sampling.
SimpleSamplingState(SamplingEmission, String, boolean) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleSamplingState
This constructor creates a state that can be used in a HMM that obtains its parameters from sampling.
SimpleSequenceAnnotationParser - Class in de.jstacs.data.sequences.annotation
This class implements a naive SequenceAnnotationParser
which simply paste the comments into SequenceAnnotation
.
SimpleSequenceAnnotationParser() -
Constructor for class de.jstacs.data.sequences.annotation.SimpleSequenceAnnotationParser
The constructor of a SimpleSequenceAnnotationParser
which simply paste the comments into SequenceAnnotation
.
SimpleSequenceIterator - Class in de.jstacs.data.bioJava
Class that implements the SequenceIterator
interface of BioJava in a
simple way, backed by an array of Sequence
s.
SimpleSequenceIterator(Sequence...) -
Constructor for class de.jstacs.data.bioJava.SimpleSequenceIterator
Creates a new SimpleSequenceIterator
from an array of
Sequence
s.
SimpleState - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states
This class implements a State
based on Emission
that allows to reuse Emission
s for different State
s.
SimpleState(Emission, String, boolean) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleState
This is the constructor of a SimpleState
.
SimpleStaticConstraint - Class in de.jstacs.parameters.validation
Class for a Constraint
that checks values against static values using
the comparison operators defined in the interface Constraint
.
SimpleStaticConstraint(Number, int) -
Constructor for class de.jstacs.parameters.validation.SimpleStaticConstraint
Creates a new SimpleStaticConstraint
from a Number
-reference and a comparison operator as defined in Constraint
.
SimpleStaticConstraint(String, int) -
Constructor for class de.jstacs.parameters.validation.SimpleStaticConstraint
Creates a new SimpleStaticConstraint
from a String
-reference and a comparison operator as defined in Constraint
.
SimpleStaticConstraint(StringBuffer) -
Constructor for class de.jstacs.parameters.validation.SimpleStaticConstraint
The standard constructor for the interface Storable
.
SimpleStringExtractor - Class in de.jstacs.io
This is a simple class that extracts String
s.
SimpleStringExtractor(String...) -
Constructor for class de.jstacs.io.SimpleStringExtractor
This constructor packs the String
s in an instance of
SimpleStringExtractor
.
SinglePositionSequenceAnnotation - Class in de.jstacs.data.sequences.annotation
Class for some annotations that consist mainly of one position on a sequence.
SinglePositionSequenceAnnotation(SinglePositionSequenceAnnotation.Type, String, int) -
Constructor for class de.jstacs.data.sequences.annotation.SinglePositionSequenceAnnotation
Creates a new SinglePositionSequenceAnnotation
of type
type
with identifier identifier
and position
position
.
SinglePositionSequenceAnnotation(SinglePositionSequenceAnnotation.Type, String, int, Result...) -
Constructor for class de.jstacs.data.sequences.annotation.SinglePositionSequenceAnnotation
Creates a new SinglePositionSequenceAnnotation
of type
type
with identifier identifier
, position
position
and additional annotations
additionalAnnotation
.
SinglePositionSequenceAnnotation(StringBuffer) -
Constructor for class de.jstacs.data.sequences.annotation.SinglePositionSequenceAnnotation
The standard constructor for the interface Storable
.
SinglePositionSequenceAnnotation.Type - Enum in de.jstacs.data.sequences.annotation
This enum
defines possible types of a
SinglePositionSequenceAnnotation
.
SINGLETON -
Static variable in class de.jstacs.data.alphabets.DNAAlphabet.DNAAlphabetParameterSet
The only instance of this class.
SINGLETON -
Static variable in class de.jstacs.data.alphabets.DNAAlphabet
The only instance of this class.
SINGLETON -
Static variable in class de.jstacs.data.alphabets.DNAAlphabetContainer.DNAAlphabetContainerParameterSet
The only instance of this class.
SINGLETON -
Static variable in class de.jstacs.data.alphabets.DNAAlphabetContainer
The only instance of this class.
SINGLETON -
Static variable in class de.jstacs.data.alphabets.ProteinAlphabet.ProteinAlphabetParameterSet
The only instance of this class.
SINGLETON -
Static variable in class de.jstacs.data.alphabets.ProteinAlphabet
The only instance of this class.
Singleton - Interface in de.jstacs
This interface states that the implementing class has only one immutable instance.
Singleton.SingletonHandler - Class in de.jstacs
This handler helps to retrieve the single instance of a Singleton
.
Singleton.SingletonHandler() -
Constructor for class de.jstacs.Singleton.SingletonHandler
size() -
Method in class de.jstacs.AnnotatedEntityList
Returns the number of AnnotatedEntity
s (not the capacity)
in the AnnotatedEntityList
.
SkewNormalLikeDurationDiffSM - Class in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif
This class implements a skew normal like discrete truncated distribution.
SkewNormalLikeDurationDiffSM(int, int, double, double, double) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
This is the main constructor if the parameters are fixed.
SkewNormalLikeDurationDiffSM(int, int, boolean, double, double, boolean, double, double, boolean, double, double, int) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
This is the constructor that allows the most flexible handling of the parameters.
SkewNormalLikeDurationDiffSM(StringBuffer) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
This is the constructor for Storable
.
skip(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.SequenceIterator
This method skips some position.
skipInit -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
Indicates if the model should be initialized (randomly) before optimization
skipLastClassifiersDuringClassifierTraining -
Variable in class de.jstacs.classifiers.assessment.ClassifierAssessment
Skip last classifier.
SmallDifferenceOfFunctionEvaluationsCondition - Class in de.jstacs.algorithms.optimization.termination
This class implements a TerminationCondition
that stops an optimization
if the difference of the current and the last function evaluations will be small, i.e.,
.
SmallDifferenceOfFunctionEvaluationsCondition(double) -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition
This constructor creates an instance that stops the optimization if the difference of the
current and the last function evaluations is smaller than epsilon
.
SmallDifferenceOfFunctionEvaluationsCondition(SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet) -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition
This is the main constructor creating an instance from a given parameter set.
SmallDifferenceOfFunctionEvaluationsCondition(StringBuffer) -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition
The standard constructor for the interface Storable
.
SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet - Class in de.jstacs.algorithms.optimization.termination
This class implements the parameter set for a SmallDifferenceOfFunctionEvaluationsCondition
.
SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet() -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet
This constructor creates an empty parameter set.
SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet(StringBuffer) -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet
The standard constructor for the interface Storable
.
SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet(double) -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet
This constructor creates a filled instance of a parameters set.
SmallGradientConditon - Class in de.jstacs.algorithms.optimization.termination
This class implements a TerminationCondition
that allows no further iteration in an optimization if the
the gradient becomes small, i.e.,
.
SmallGradientConditon(double) -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon
This constructor creates an instance that stops the optimization if the sum of the absolute
values of gradient components is smaller than epsilon
.
SmallGradientConditon(SmallGradientConditon.SmallGradientConditonParameterSet) -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon
This is the main constructor creating an instance from a given parameter set.
SmallGradientConditon(StringBuffer) -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon
The standard constructor for the interface Storable
.
SmallGradientConditon.SmallGradientConditonParameterSet - Class in de.jstacs.algorithms.optimization.termination
This class implements the parameter set for a SmallStepCondition
.
SmallGradientConditon.SmallGradientConditonParameterSet() -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon.SmallGradientConditonParameterSet
This constructor creates an empty parameter set.
SmallGradientConditon.SmallGradientConditonParameterSet(StringBuffer) -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon.SmallGradientConditonParameterSet
The standard constructor for the interface Storable
.
SmallGradientConditon.SmallGradientConditonParameterSet(double) -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon.SmallGradientConditonParameterSet
This constructor creates a filled instance of a parameters set.
SmallStepCondition - Class in de.jstacs.algorithms.optimization.termination
This class implements a TerminationCondition
that allows no further iteration in an optimization if the
scalar product of the current and the last values of x
will be small, i.e.,
.
SmallStepCondition(double) -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition
This constructor creates an instance that allows no further iteration in an optimization if the
scalar product of the current and the last values of x
is smaller than epsilon
.
SmallStepCondition(SmallStepCondition.SmallStepConditionParameterSet) -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition
This is the main constructor creating an instance from a given parameter set.
SmallStepCondition(StringBuffer) -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition
The standard constructor for the interface Storable
.
SmallStepCondition.SmallStepConditionParameterSet - Class in de.jstacs.algorithms.optimization.termination
This class implements the parameter set for a SmallStepCondition
.
SmallStepCondition.SmallStepConditionParameterSet() -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition.SmallStepConditionParameterSet
This constructor creates an empty parameter set.
SmallStepCondition.SmallStepConditionParameterSet(StringBuffer) -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition.SmallStepConditionParameterSet
The standard constructor for the interface Storable
.
SmallStepCondition.SmallStepConditionParameterSet(double) -
Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition.SmallStepConditionParameterSet
This constructor creates a filled instance of a parameters set.
smooth(double[]) -
Method in class de.jstacs.data.DinucleotideProperty.MeanSmoothing
smooth(double[]) -
Method in class de.jstacs.data.DinucleotideProperty.MedianSmoothing
smooth(double[]) -
Method in class de.jstacs.data.DinucleotideProperty.NoSmoothing
smooth(double[]) -
Method in class de.jstacs.data.DinucleotideProperty.Smoothing
Returns the smoothed version of original
.
SoftOneOfN - Class in de.jstacs.utils.random
This random generator returns 1-epsilon
for one and equal parts
for the rest of a random vector.
SoftOneOfN(double) -
Constructor for class de.jstacs.utils.random.SoftOneOfN
This constructor can be used for (soft) sampling one of n.
SoftOneOfN() -
Constructor for class de.jstacs.utils.random.SoftOneOfN
This constructor can be used for (hard) sampling one of n.
sort(String) -
Method in class de.jstacs.results.ListResult
This method enables you to sort the entries of this container by a
specified column.
sort() -
Method in class de.jstacs.utils.IntList
This method sorts the elements of the list.
sostream -
Variable in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
This stream is used for comments, e.g. during the training, ... .
sostream -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM
This stream is used for comments, computation steps/results or any other
kind of output during the training, ... etc.
sostream -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This is the stream for writing information while training.
sostream -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This is the stream for writing information while training.
source -
Variable in class de.jstacs.algorithms.graphs.Edge
The source node.
SparseSequence - Class in de.jstacs.data.sequences
This class is an implementation for sequences on one alphabet with length 4.
SparseSequence(AlphabetContainer, String) -
Constructor for class de.jstacs.data.sequences.SparseSequence
Creates a new SparseSequence
from a String
representation.
SparseSequence(AlphabetContainer, SymbolExtractor) -
Constructor for class de.jstacs.data.sequences.SparseSequence
Creates a new SparseSequence
from a SymbolExtractor
.
SparseStringExtractor - Class in de.jstacs.io
This StringExtractor
reads the String
s from a File
as
the user asks for the String
.
SparseStringExtractor(String) -
Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file.
SparseStringExtractor(File) -
Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file.
SparseStringExtractor(String, SequenceAnnotationParser) -
Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file.
SparseStringExtractor(String, char) -
Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file and ignores
those starting with the comment character ignore
.
SparseStringExtractor(File, char) -
Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file and ignores
those starting with the comment character ignore
.
SparseStringExtractor(String, char, SequenceAnnotationParser) -
Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file and ignores
those starting with the comment character ignore
.
SparseStringExtractor(String, String, SequenceAnnotationParser) -
Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file and sets the
annotation of the source to annotation
.
SparseStringExtractor(String, char, String, SequenceAnnotationParser) -
Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file, ignores those
starting with the comment character ignore
and sets the
annotation of the source to annotation
.
SparseStringExtractor(File, char, String, SequenceAnnotationParser) -
Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file, ignores those
starting with the comment character ignore
and sets the
annotation of the source to annotation
.
spearmanCorrelation(double[], double[]) -
Static method in class de.jstacs.utils.ToolBox
The method computes the Spearman correlation of two vectors.
SplitSequenceAnnotationParser - Class in de.jstacs.data.sequences.annotation
This class implements a simple SequenceAnnotationParser
which simply splits the comments by specific delimiters.
SplitSequenceAnnotationParser() -
Constructor for class de.jstacs.data.sequences.annotation.SplitSequenceAnnotationParser
Creates a new SplitSequenceAnnotationParser
with specific delimiters, i.e., key value
delimiter "=" and annotation delimiter ";".
SplitSequenceAnnotationParser(String, String) -
Constructor for class de.jstacs.data.sequences.annotation.SplitSequenceAnnotationParser
Creates a new SplitSequenceAnnotationParser
with user-specified delimiters.
standardDeviation -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.PluginGaussianEmission
Initial standard deviation.
start -
Variable in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
This array specifies the start positions of the specific parts.
START_NODE -
Static variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
The String
for the start node used in Graphviz annotation.
StartDistanceForecaster - Interface in de.jstacs.algorithms.optimization
This interface is used to determine the next start distance that will be used
in a line search.
startIndexOfParams -
Variable in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
This array contains the start indices for DifferentiableSequenceScore.setParameters(double[], int)
on IndependentProductDiffSS.score
.
starts -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
The start indices.
starts -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
The number of starts.
State - Interface in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states
This interface declares the methods of any state used in a hidden Markov model.
stateList -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
Helper variable = only for internal use.
states -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
The (hidden) states of the HMM.
states -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
The states that can be visited
StationaryDistribution - Class in de.jstacs.utils
This class can be used to determine the stationary distribution.
StationaryDistribution() -
Constructor for class de.jstacs.utils.StationaryDistribution
stationaryIteration -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
The number of (stationary) iterations of the Gibbs Sampler.
statistic -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
The array for storing the statistics for
each parameter
statistic -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
The sufficient statistic for determining the parameters during sampling, viterbi or Baum-Welch training.
StatisticalModel - Interface in de.jstacs.sequenceScores.statisticalModels
This interface declares methods of a statistical model, i.e., a SequenceScore
that defines a proper likelihood
over the input Sequence
s.
StatisticalModelTester - Class in de.jstacs.utils
This class is useful for some test for any (discrete) models.
StatisticalModelTester() -
Constructor for class de.jstacs.utils.StatisticalModelTester
StatisticalTest - Class in de.jstacs.utils
This class enables the user to compute some divergences.
StatisticalTest() -
Constructor for class de.jstacs.utils.StatisticalTest
statisticsTransitionProb -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.DistanceBasedScaledTransitionElement
Represents the summarized epsilons required for estimating the transition probabilities from the context
.
statisticsTransitionProb -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ReferenceBasedTransitionElement
Represents the gammas required for estimating the transition probabilities not including pseudocounts.
STEEPEST_DESCENT -
Static variable in class de.jstacs.algorithms.optimization.Optimizer
This constant can be used to specify that the steepest descent should be
used in the optimize
-method.
steepestDescent(DifferentiableFunction, double[], TerminationCondition, double, StartDistanceForecaster, OutputStream, Time) -
Static method in class de.jstacs.algorithms.optimization.Optimizer
The steepest descent.
stopThreads() -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
This method can and should be used to stop all threads if they are not needed any longer.
Storable - Interface in de.jstacs
This is the root interface for all immutable objects that must be stored in
e.g. a file or a database.
StorableResult - Class in de.jstacs.results
Class for Result
s that are Storable
s.
StorableResult(String, String, Storable) -
Constructor for class de.jstacs.results.StorableResult
Creates a result for an XML representation of an object.
StorableResult(StringBuffer) -
Constructor for class de.jstacs.results.StorableResult
The standard constructor for the interface Storable
.
StorableValidator - Class in de.jstacs.parameters.validation
Class for a validator that validates instances and XML representations for
the correct class types (e.g.
StorableValidator(Class<? extends Storable>, boolean) -
Constructor for class de.jstacs.parameters.validation.StorableValidator
Creates a new StorableValidator
for a subclass of
AbstractTrainableStatisticalModel
or AbstractClassifier
.
StorableValidator(Class<? extends Storable>) -
Constructor for class de.jstacs.parameters.validation.StorableValidator
Creates a new StorableValidator
for a subclass of
Storable
.
StorableValidator(StringBuffer) -
Constructor for class de.jstacs.parameters.validation.StorableValidator
The standard constructor for the interface Storable
.
StrandDiffSM - Class in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture
This class enables the user to search on both strand.
StrandDiffSM(DifferentiableStatisticalModel, double, int, boolean, StrandDiffSM.InitMethod) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
This constructor creates a StrandDiffSM that optimizes the usage of each strand.
StrandDiffSM(DifferentiableStatisticalModel, int, boolean, StrandDiffSM.InitMethod, double) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
This constructor creates a StrandDiffSM that has a fixed frequency for the strand usage.
StrandDiffSM(StringBuffer) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
This is the constructor for Storable
.
StrandDiffSM.InitMethod - Enum in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture
This enum defines the different types of plug-in initialization of a StrandDiffSM
.
StrandedLocatedSequenceAnnotationWithLength - Class in de.jstacs.data.sequences.annotation
Class for a SequenceAnnotation
that has a position, a length and an
orientation on the strand of a Sequence
.
StrandedLocatedSequenceAnnotationWithLength(int, int, StrandedLocatedSequenceAnnotationWithLength.Strand, String, String, Result...) -
Constructor for class de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength
Creates a new StrandedLocatedSequenceAnnotationWithLength
of type
type
with identifier identifier
and additional
annotation (that does not fit the SequenceAnnotation
definitions)
given as an array of Result
s results
.
StrandedLocatedSequenceAnnotationWithLength(int, int, StrandedLocatedSequenceAnnotationWithLength.Strand, String, String, Collection<Result>) -
Constructor for class de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength
Creates a new StrandedLocatedSequenceAnnotationWithLength
of type
type
with identifier identifier
and additional
annotation (that does not fit the SequenceAnnotation
definitions)
given as a Collection
of Result
s results
.
StrandedLocatedSequenceAnnotationWithLength(int, int, StrandedLocatedSequenceAnnotationWithLength.Strand, String, String, SequenceAnnotation[], Result...) -
Constructor for class de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength
Creates a new StrandedLocatedSequenceAnnotationWithLength
of type
type
with identifier identifier
, additional
annotation (that does not fit the SequenceAnnotation
definitions)
given as an array of Result
s additionalAnnotations
and sub-annotations annotations
.
StrandedLocatedSequenceAnnotationWithLength(String, String, StrandedLocatedSequenceAnnotationWithLength.Strand, LocatedSequenceAnnotation[], Result...) -
Constructor for class de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength
Creates a new StrandedLocatedSequenceAnnotationWithLength
of type
type
with identifier identifier
, additional
annotation (that does not fit the SequenceAnnotation
definitions)
given as an array of Result
s additionalAnnotations
and sub-annotations annotations
.
StrandedLocatedSequenceAnnotationWithLength(StringBuffer) -
Constructor for class de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength
The standard constructor for the interface Storable
.
StrandedLocatedSequenceAnnotationWithLength.Strand - Enum in de.jstacs.data.sequences.annotation
This enum defines possible orientations on the strands.
strandedness() -
Method in enum de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength.Strand
Returns the strandedness, i.e. the orientation on the strand of the
sequence as a String
.
StrandTrainSM - Class in de.jstacs.sequenceScores.statisticalModels.trainable.mixture
This model handles sequences that can either lie on the forward strand or on
the reverse complementary strand.
StrandTrainSM(TrainableStatisticalModel, int, boolean, double[], double, AbstractMixtureTrainSM.Algorithm, double, TerminationCondition, AbstractMixtureTrainSM.Parameterization, int, int, BurnInTest) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
Creates a new StrandTrainSM
.
StrandTrainSM(TrainableStatisticalModel, int, double[], double, TerminationCondition, AbstractMixtureTrainSM.Parameterization) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
Creates an instance using EM and estimating the component probabilities.
StrandTrainSM(TrainableStatisticalModel, int, double, double, TerminationCondition, AbstractMixtureTrainSM.Parameterization) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
Creates an instance using EM and fixed component probabilities.
StrandTrainSM(TrainableStatisticalModel, int, double[], int, int, BurnInTest) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
Creates an instance using Gibbs Sampling and sampling the component
probabilities.
StrandTrainSM(TrainableStatisticalModel, int, double, int, int, BurnInTest) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
Creates an instance using Gibbs Sampling and fixed component
probabilities.
StrandTrainSM(StringBuffer) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
The constructor for the interface Storable
.
StringAlignment - Class in de.jstacs.algorithms.alignment
Class for the representation of an alignment of String
s.
StringAlignment(double, String...) -
Constructor for class de.jstacs.algorithms.alignment.StringAlignment
This constructor creates an instance storing the aligned Strings and the costs of the alignment.
StringExtractor - Class in de.jstacs.io
This class implements the reader that extracts String
s from either a
File
or a String
.
StringExtractor(File, int) -
Constructor for class de.jstacs.io.StringExtractor
A constructor that reads the lines from file
.
StringExtractor(File, int, char) -
Constructor for class de.jstacs.io.StringExtractor
A constructor that reads the lines from file
and ignores
those starting with the comment character ignore
.
StringExtractor(File, int, String) -
Constructor for class de.jstacs.io.StringExtractor
A constructor that reads the lines from file
and sets the
annotation of the source to annotation
.
StringExtractor(File, int, char, String) -
Constructor for class de.jstacs.io.StringExtractor
A constructor that reads the lines from file
, ignores those
starting with the comment character ignore
and sets the
annotation of the source to annotation
.
StringExtractor(String, int, String) -
Constructor for class de.jstacs.io.StringExtractor
A constructor that reads the lines from a String
content
and sets the annotation of the source to
annotation
.
StringExtractor(String, int, char, String) -
Constructor for class de.jstacs.io.StringExtractor
A constructor that reads the lines from a String
content
, ignores those starting with the comment character
ignore
and sets the annotation of the source to
annotation
.
StructureLearner - Class in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous
This class can be used to learn the structure of any discrete model.
StructureLearner(AlphabetContainer, int, double) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.StructureLearner
Creates a new StructureLearner
for a given
AlphabetContainer
, a given length and a given equivalent
sample size (ess).
StructureLearner(AlphabetContainer, int) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.StructureLearner
Creates a StructureLearner
with equivalent sample
size (ess) = 0.
StructureLearner.LearningType - Enum in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous
This enum
defines the different types of learning that are
possible with the StructureLearner
.
StructureLearner.ModelType - Enum in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous
This enum
defines the different types of models that can be
learned with the StructureLearner
.
structureMeasure -
Variable in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
Measure
that defines the network structure.
SubclassFinder - Class in de.jstacs.utils
Utility-class with static methods to
find all sub-classes of a certain class (or interface) within the scope
of the current class-loader
find all sub-classes of a certain class (or interface) within the scope
of the current class-loader that can be instantiated, i.e. that are neither
interfaces nor abstract
filter a set of classes by inheritance from a super-class
obtain the class of an InstanceParameterSet
that can be used to
instantiate a sub-class of InstantiableFromParameterSet
.
SubclassFinder() -
Constructor for class de.jstacs.utils.SubclassFinder
subSampling(int) -
Method in class de.jstacs.data.DataSet
Randomly samples elements, i.e.
SubTensor - Class in de.jstacs.algorithms.graphs.tensor
This Tensor can be used to extract or use only a part of a complete Tensor
.
SubTensor(Tensor, int, int) -
Constructor for class de.jstacs.algorithms.graphs.tensor.SubTensor
This constructor creates a SubTensor
using the Tensor
t
for the nodes offset, offset+1, ..., offset+length-1
.
sum -
Variable in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractOptimizableFunction
The sums of the weighted data per class and additional the total weight
sum.
sum(double[]) -
Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Computes the sum of all elements in the array ar
.
sum(double...) -
Static method in class de.jstacs.utils.ToolBox
Computes the sum of the values in array
sum(int, int, double[]) -
Static method in class de.jstacs.utils.ToolBox
Computes the sum of the values in array
starting at
start
until end
.
sumNormalisation(double[]) -
Static method in class de.jstacs.utils.Normalisation
The method does a sum-normalisation on d
, i.e. divides all values
in d
by the sum over all values in d
and returns the
sum of the values.
sumNormalisation(double[], double[], int) -
Static method in class de.jstacs.utils.Normalisation
The method does a sum-normalisation on d
, i.e. divides all values
in d
by the sum over all values in d
and writes the result to dest
starting at position
start
while d
remains unchanged.
swap() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method swaps the current component models with the alternative
model.
symbol -
Variable in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
The symbol (out of some Alphabet
) this parameter
is responsible for.
SymbolExtractor - Class in de.jstacs.io
This class enables you to extract elements (symbols) from a given
String
similar to a StringTokenizer
.
SymbolExtractor(String) -
Constructor for class de.jstacs.io.SymbolExtractor
Creates a new SymbolExtractor
using delim
as
delimiter.
SymbolExtractor(String, String) -
Constructor for class de.jstacs.io.SymbolExtractor
Creates a new SymbolExtractor
using delim
as
delimiter and string
as the String
to be parsed.
SymmetricTensor - Class in de.jstacs.algorithms.graphs.tensor
This class can be used for Tensor
s with a special symmetry property.
SymmetricTensor(int, byte) -
Constructor for class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
This constructor creates an empty symmetric tensor with given dimension.
SymmetricTensor(SymmetricTensor[], double[]) -
Constructor for class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
The constructor can be used creating a new SymmetricTensor
as
weighted sum of SymmetricTensor
s.
SymmetricTensor(AsymmetricTensor) -
Constructor for class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
This constructor creates and checks a filled asymmetric tensor from an
AsymmetricTensor
instance.
SymmetricTensor(double[][][], int, byte) -
Constructor for class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
This constructor creates and checks a filled asymmetric tensor with given
dimension.
Overview
Package
Class
Use
Tree
Deprecated
Index
Help
PREV LETTER
NEXT LETTER
FRAMES
NO FRAMES
All Classes
A B C D E F G H I J K L M N O P Q R S T U V W X Z