|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectde.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.MarkovModelDiffSM
public class MarkovModelDiffSM
This class implements a AbstractDifferentiableStatisticalModel
for an inhomogeneous Markov model.
The modeled length can be modified which might be very important for de-novo motif discovery.
Field Summary |
---|
Fields inherited from class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM |
---|
ess, isTrained, logNormalizationConstant, numFreePars, nums, order, parameters, plugInParameters, structureMeasure, trees |
Fields inherited from class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore |
---|
alphabets, length, r |
Fields inherited from interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore |
---|
UNKNOWN |
Constructor Summary | |
---|---|
MarkovModelDiffSM(AlphabetContainer alphabet,
int length,
double ess,
boolean plugInParameters,
InhomogeneousMarkov structureMeasure)
This constructor creates an instance without any prior for the modeled length. |
|
MarkovModelDiffSM(AlphabetContainer alphabet,
int length,
double ess,
boolean plugInParameters,
InhomogeneousMarkov structureMeasure,
DurationDiffSM lengthPenalty)
This constructor creates an instance with an prior for the modeled length. |
|
MarkovModelDiffSM(AlphabetContainer alphabet,
int length,
double ess,
boolean plugInParameters,
int order,
DurationDiffSM lengthPenalty)
This constructor creates an instance with an prior for the modeled length. |
|
MarkovModelDiffSM(StringBuffer xml)
The standard constructor for the interface Storable . |
Method Summary | |
---|---|
protected void |
fromXML(StringBuffer source)
This method is called in the constructor for the Storable
interface to create a scoring function from a StringBuffer . |
double |
getLogPriorTerm()
This method computes a value that is proportional to
where prior is the prior for the parameters of this model. |
int |
getOrder()
Returns the order of the inhomogeneous Markov model. |
int[][] |
getSamplingGroups(int parameterOffset)
Returns groups of indexes of parameters that shall be drawn together in a sampling procedure |
boolean |
modify(int offsetLeft,
int offsetRight)
Manually modifies the model. |
StringBuffer |
toXML()
This method returns an XML representation as StringBuffer of an
instance of the implementing class. |
Methods inherited from class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM |
---|
addGradientOfLogPriorTerm, clone, createTrees, emitDataSet, getCurrentParameterSet, getCurrentParameterValues, getESS, getInstanceName, getLogNormalizationConstant, getLogPartialNormalizationConstant, getLogScoreAndPartialDerivation, getLogScoreFor, getNumberOfParameters, getPositionDependentKMerProb, getPositionForParameter, getPWM, getSizeOfEventSpaceForRandomVariablesOfParameter, initializeFunction, initializeFunctionRandomly, isInitialized, precomputeNormalization, setParameters, setPlugInParameters, toString |
Methods inherited from class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel |
---|
getInitialClassParam, getLogProbFor, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, getMaximalMarkovOrder, isNormalized, isNormalized |
Methods inherited from class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore |
---|
getAlphabetContainer, getCharacteristics, getLength, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getLogScoreFor, getLogScoreFor, getNumberOfRecommendedStarts, getNumberOfStarts, getNumericalCharacteristics |
Methods inherited from class java.lang.Object |
---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Methods inherited from interface de.jstacs.sequenceScores.statisticalModels.differentiable.DifferentiableStatisticalModel |
---|
addGradientOfLogPriorTerm, getESS, getLogNormalizationConstant, getLogPartialNormalizationConstant, getSizeOfEventSpaceForRandomVariablesOfParameter, isNormalized |
Methods inherited from interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore |
---|
clone, getCurrentParameterValues, getInitialClassParam, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getNumberOfParameters, getNumberOfRecommendedStarts, initializeFunction, initializeFunctionRandomly, setParameters |
Methods inherited from interface de.jstacs.sequenceScores.statisticalModels.StatisticalModel |
---|
emitDataSet, getLogProbFor, getLogProbFor, getLogProbFor, getMaximalMarkovOrder |
Methods inherited from interface de.jstacs.sequenceScores.SequenceScore |
---|
getAlphabetContainer, getCharacteristics, getInstanceName, getLength, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getNumericalCharacteristics, isInitialized |
Constructor Detail |
---|
public MarkovModelDiffSM(AlphabetContainer alphabet, int length, double ess, boolean plugInParameters, int order, DurationDiffSM lengthPenalty) throws Exception
alphabet
- the AlphabetContainer
of the MarkovModelDiffSM
length
- the initial length of the modeled sequencesess
- the equivalent sample sizeplugInParameters
- a switch whether to use plug-in parameters of notorder
- the order of the Markov modellengthPenalty
- the prior on the modeled sequence length
Exception
- if super class constructor throws an Exception
or if the lengthPenalty
does not allow the initial lengthpublic MarkovModelDiffSM(AlphabetContainer alphabet, int length, double ess, boolean plugInParameters, InhomogeneousMarkov structureMeasure) throws Exception
alphabet
- the AlphabetContainer
of the MarkovModelDiffSM
length
- the initial length of the modeled sequencesess
- the equivalent sample sizeplugInParameters
- a switch whether to use plug-in parameters of notstructureMeasure
- an InhomogeneousMarkov
Measure
for the structure
Exception
- if super class constructor throws an Exception
public MarkovModelDiffSM(AlphabetContainer alphabet, int length, double ess, boolean plugInParameters, InhomogeneousMarkov structureMeasure, DurationDiffSM lengthPenalty) throws Exception
alphabet
- the AlphabetContainer
of the MarkovModelDiffSM
length
- the initial length of the modeled sequencesess
- the equivalent sample sizeplugInParameters
- a switch whether to use plug-in parameters of notstructureMeasure
- a InhomogeneousMarkov
Measure
for the structurelengthPenalty
- the prior on the modeled sequence length
Exception
- if super class constructor throws an Exception
or if the lengthPenalty
does not allow the initial lengthpublic MarkovModelDiffSM(StringBuffer xml) throws NonParsableException
Storable
.
Recreates a MarkovModelDiffSM
from its XML
representation as saved by the method toXML()
.
xml
- the XML representation as StringBuffer
NonParsableException
- if the XML code could not be parsedMethod Detail |
---|
protected void fromXML(StringBuffer source) throws NonParsableException
AbstractDifferentiableSequenceScore
Storable
interface to create a scoring function from a StringBuffer
.
fromXML
in class BayesianNetworkDiffSM
source
- the XML representation as StringBuffer
NonParsableException
- if the StringBuffer
could not be parsedAbstractDifferentiableSequenceScore.AbstractDifferentiableSequenceScore(StringBuffer)
public StringBuffer toXML()
Storable
StringBuffer
of an
instance of the implementing class.
toXML
in interface Storable
toXML
in class BayesianNetworkDiffSM
public double getLogPriorTerm()
DifferentiableStatisticalModel
DifferentiableStatisticalModel.getESS()
* DifferentiableStatisticalModel.getLogNormalizationConstant()
+ Math.log( prior )
prior
is the prior for the parameters of this model.
getLogPriorTerm
in interface DifferentiableStatisticalModel
getLogPriorTerm
in interface StatisticalModel
getLogPriorTerm
in class BayesianNetworkDiffSM
DifferentiableStatisticalModel.getESS()
* DifferentiableStatisticalModel.getLogNormalizationConstant()
+ Math.log( prior ).
DifferentiableStatisticalModel.getESS()
,
DifferentiableStatisticalModel.getLogNormalizationConstant()
public int getOrder()
public boolean modify(int offsetLeft, int offsetRight)
Mutable
offsetLeft
and offsetRight
define how many positions the left or
right border positions shall be moved. Negative numbers indicate moves to
the left while positive numbers correspond to moves to the right.
modify
in interface Mutable
offsetLeft
- the offset on the left sideoffsetRight
- the offset on the right side
true
if the motif model was modified otherwise
false
public int[][] getSamplingGroups(int parameterOffset)
SamplingDifferentiableStatisticalModel
getSamplingGroups
in interface SamplingDifferentiableStatisticalModel
parameterOffset
- a global offset on the parameter indexes
parameterOffset
.
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |