|
||||||||||
PREV LETTER NEXT LETTER | FRAMES NO FRAMES All Classes |
AbstractClassifier.train(DataSet[])
or
the weighted version.
train
-method.
true
, if this AbstractSelectionParameter
has a
default value.
true
, if this SelectionParameter
has a
default value.
true
if the parameter either has a default value or
the value was set by the user, false
otherwise.
true
if all parameters in this ParameterSet
are either set by the user or have default values.
Sequence.hashCode()
and the hash code for one specific position.
HiddenMotifMixture
.
Storable
.
Storable
.
AbstractHMM
allowing to use gradient based or sampling training algorithm.Storable
.
BasicHigherOrderTransition.AbstractTransitionElement
.HMMFactory.PseudoTransitionElement
without edge weights.
HMMFactory.PseudoTransitionElement
with specific edge weights.
ParameterSet
that is used for the training of an AbstractHMM
.Storable
.
Storable
.
HomMMParameterSet
with AlphabetContainer
,
ess (equivalent sample size), description and order
of the homogeneous Markov model.
DifferentiableSequenceScore
s.HomogeneousDiffSM
that models sequences of arbitrary
length.
HomogeneousDiffSM
that models sequences of a given
length.
Storable
.
Storable
.
Storable
.
Storable
.
Storable
.
Storable
.
HomogeneousTrainSM.HomCondProb
instance from a given one.
Storable
.
HomogeneousTrainSMParameterSet
from the class that can be
instantiated using this HomogeneousTrainSMParameterSet
.
HomogeneousTrainSMParameterSet
with
AlphabetContainer
, ess (equivalent sample
size), description and order of the homogeneous Markov model.
|
||||||||||
PREV LETTER NEXT LETTER | FRAMES NO FRAMES All Classes |