|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectde.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
public class IndependentProductDiffSM
This class enables the user to model parts of a sequence independent of each
other. For instance, the first part of the sequence is modeled by the first
DifferentiableStatisticalModel
and has the length of the first
DifferentiableStatisticalModel
, the second part starts directly after
the first part, is modeled by the second DifferentiableStatisticalModel
... etc. It is also possible to use a DifferentiableStatisticalModel
for
more than one sequence part and in both orientations (if possible).
It is important to set the equivalent sample size (ESS) of each instance carefully, i.e., corresponding to the ESS of the parts.
Nested Class Summary |
---|
Nested classes/interfaces inherited from interface de.jstacs.motifDiscovery.MotifDiscoverer |
---|
MotifDiscoverer.KindOfProfile |
Field Summary |
---|
Fields inherited from class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS |
---|
index, isVariable, partialLength, reverse, score, start, startIndexOfParams |
Fields inherited from class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore |
---|
alphabets, length, r |
Fields inherited from interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore |
---|
UNKNOWN |
Constructor Summary | |
---|---|
IndependentProductDiffSM(double ess,
boolean plugIn,
DifferentiableStatisticalModel... functions)
This constructor creates an instance of an IndependentProductDiffSM from a given series of
independent DifferentiableStatisticalModel s. |
|
IndependentProductDiffSM(double ess,
boolean plugIn,
DifferentiableStatisticalModel[] functions,
int[] length)
This constructor creates an instance of an IndependentProductDiffSM from given series of
independent DifferentiableStatisticalModel s and lengths. |
|
IndependentProductDiffSM(double ess,
boolean plugIn,
DifferentiableStatisticalModel[] functions,
int[] index,
int[] length,
boolean[] reverse)
This is the main constructor. |
|
IndependentProductDiffSM(StringBuffer source)
This is the constructor for the interface Storable . |
Method Summary | |
---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of DifferentiableStatisticalModel.getLogPriorTerm() for each
parameter of this model. |
void |
adjustHiddenParameters(int index,
DataSet[] data,
double[][] weights)
Adjusts all hidden parameters including duration and mixture parameters according to the current values of the remaining parameters. |
IndependentProductDiffSM |
clone()
Creates a clone (deep copy) of the current DifferentiableSequenceScore
instance. |
DataSet |
emitDataSet(int numberOfSequences,
int... seqLength)
This method returns a DataSet object containing artificial
sequence(s). |
protected void |
extractFurtherInformation(StringBuffer rep)
This method is the opposite of IndependentProductDiffSS.getFurtherInformation() . |
double |
getESS()
Returns the equivalent sample size (ess) of this model, i.e. the equivalent sample size for the class or component that is represented by this model. |
protected StringBuffer |
getFurtherInformation()
This method is used to append further information of the instance to the XML representation. |
int |
getGlobalIndexOfMotifInComponent(int component,
int motif)
Returns the global index of the motif used in
component . |
int |
getIndexOfMaximalComponentFor(Sequence sequence)
Returns the index of the component with the maximal score for the sequence sequence . |
String |
getInstanceName()
Should return a short instance name such as iMM(0), BN(2), ... |
double |
getLogNormalizationConstant()
Returns the logarithm of the sum of the scores over all sequences of the event space. |
double |
getLogPartialNormalizationConstant(int parameterIndex)
Returns the logarithm of the partial normalization constant for the parameter with index parameterIndex . |
double |
getLogPriorTerm()
This method computes a value that is proportional to
where prior is the prior for the parameters of this model. |
double |
getLogProbFor(Sequence sequence)
Returns the logarithm of the probability of the given sequence given the model. |
double |
getLogProbFor(Sequence sequence,
int startpos)
Returns the logarithm of the probability of (a part of) the given sequence given the model. |
double |
getLogProbFor(Sequence sequence,
int startpos,
int endpos)
Returns the logarithm of the probability of (a part of) the given sequence given the model. |
byte |
getMaximalMarkovOrder()
This method returns the maximal used Markov order, if possible. |
int |
getMotifLength(int motif)
This method returns the length of the motif with index motif
. |
int |
getNumberOfComponents()
Returns the number of components in this MotifDiscoverer . |
int |
getNumberOfMotifs()
Returns the number of motifs for this MotifDiscoverer . |
int |
getNumberOfMotifsInComponent(int component)
Returns the number of motifs that are used in the component component of this MotifDiscoverer . |
int |
getNumberOfParameters()
Returns the number of parameters in this DifferentiableSequenceScore . |
int |
getNumberOfRecommendedStarts()
This method returns the number of recommended optimization starts. |
double[] |
getProfileOfScoresFor(int component,
int motif,
Sequence sequence,
int startpos,
MotifDiscoverer.KindOfProfile dist)
Returns the profile of the scores for component component
and motif motif at all possible start positions of the motif
in the sequence sequence beginning at startpos . |
int |
getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
Returns the size of the event space of the random variables that are affected by parameter no. |
double[] |
getStrandProbabilitiesFor(int component,
int motif,
Sequence sequence,
int startpos)
This method returns the probabilities of the strand orientations for a given subsequence if it is considered as site of the motif model in a specific component. |
void |
initializeMotif(int motifIndex,
DataSet data,
double[] weights)
This method allows to initialize the model of a motif manually using a weighted sample. |
void |
initializeMotifRandomly(int motif)
This method initializes the motif with index motif randomly using for instance DifferentiableSequenceScore.initializeFunctionRandomly(boolean) . |
boolean |
isNormalized()
This method indicates whether the implemented score is already normalized to 1 or not. |
boolean |
modifyMotif(int motifIndex,
int offsetLeft,
int offsetRight)
Manually modifies the motif model with index motifIndex . |
void |
setParameters(double[] params,
int start)
This method sets the internal parameters to the values of params between start and
start + |
Methods inherited from class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS |
---|
extractSequenceParts, extractWeights, fromXML, getCurrentParameterValues, getFunctions, getIndices, getLengthArray, getLogScoreAndPartialDerivation, getLogScoreFor, getPartialLengths, getReverseSwitches, initializeFunction, initializeFunctionRandomly, isInitialized, setParamsStarts, toString, toXML |
Methods inherited from class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore |
---|
getAlphabetContainer, getCharacteristics, getInitialClassParam, getLength, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getNumberOfStarts, getNumericalCharacteristics |
Methods inherited from class java.lang.Object |
---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Methods inherited from interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore |
---|
getCurrentParameterValues, getInitialClassParam, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, initializeFunction, initializeFunctionRandomly |
Methods inherited from interface de.jstacs.sequenceScores.SequenceScore |
---|
getAlphabetContainer, getCharacteristics, getLength, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getNumericalCharacteristics, isInitialized |
Methods inherited from interface de.jstacs.Storable |
---|
toXML |
Constructor Detail |
---|
public IndependentProductDiffSM(double ess, boolean plugIn, DifferentiableStatisticalModel... functions) throws CloneNotSupportedException, IllegalArgumentException, WrongAlphabetException
IndependentProductDiffSM
from a given series of
independent DifferentiableStatisticalModel
s. The length that is
modeled by each component is determined by
SequenceScore.getLength()
. So the length should not be 0.
ess
- the equivalent sample sizeplugIn
- whether to use plugIn parameters for the parts, otherwise the last parameters
are used for parts that are instance of
HomogeneousDiffSM
functions
- the components, i.e. the given series of independent
DifferentiableStatisticalModel
s
CloneNotSupportedException
- if at least one element of functions
could not
be cloned
IllegalArgumentException
- if at least one component has length 0 or if the
equivalent sample size (ess) is smaller than zero (0)
WrongAlphabetException
- if the user tries to use an alphabet for a reverse complement that can not be used for a reverse complement.IndependentProductDiffSM(double, boolean, DifferentiableStatisticalModel[], int[])
public IndependentProductDiffSM(double ess, boolean plugIn, DifferentiableStatisticalModel[] functions, int[] length) throws CloneNotSupportedException, IllegalArgumentException, WrongAlphabetException
IndependentProductDiffSM
from given series of
independent DifferentiableStatisticalModel
s and lengths.
ess
- the equivalent sample sizeplugIn
- whether to use plugIn parameters for the parts, otherwise the last parameters
are used for parts that are instance of
HomogeneousDiffSM
functions
- the components, i.e. the given series of independent
DifferentiableStatisticalModel
slength
- the lengths, one for each component
CloneNotSupportedException
- if at least one component could not be cloned
IllegalArgumentException
- if the lengths and the components are not matching or if the
equivalent sample size (ess) is smaller than zero (0)
WrongAlphabetException
- if the user tries to use an alphabet for a reverse complement that can not be used for a reverse complement.IndependentProductDiffSM(double, boolean, DifferentiableStatisticalModel[], int[], int[], boolean[])
public IndependentProductDiffSM(double ess, boolean plugIn, DifferentiableStatisticalModel[] functions, int[] index, int[] length, boolean[] reverse) throws CloneNotSupportedException, IllegalArgumentException, WrongAlphabetException
ess
- the equivalent sample sizeplugIn
- whether to use plugIn parameters for the parts, otherwise the last parameters
are used for parts that are instance of
HomogeneousDiffSM
functions
- the DifferentiableStatisticalModel
index
- the index of the DifferentiableStatisticalModel
at each partlength
- the length of each partreverse
- a switch whether to use it directly or the reverse complementary strand
CloneNotSupportedException
- if at least one component could not be cloned
IllegalArgumentException
- if the lengths and the components are not matching or if the
equivalent sample size (ess) is smaller than zero (0)
WrongAlphabetException
- if the user tries to use an alphabet for a reverse complement that can not be used for a reverse complement.public IndependentProductDiffSM(StringBuffer source) throws NonParsableException
Storable
.
Creates a new IndependentProductDiffSM
out of a
StringBuffer
as returned by IndependentProductDiffSS.toXML()
.
source
- the XML representation as StringBuffer
NonParsableException
- if the XML representation could not be parsedMethod Detail |
---|
public IndependentProductDiffSM clone() throws CloneNotSupportedException
DifferentiableSequenceScore
DifferentiableSequenceScore
instance.
clone
in interface MotifDiscoverer
clone
in interface DifferentiableSequenceScore
clone
in interface SequenceScore
clone
in class IndependentProductDiffSS
DifferentiableSequenceScore
CloneNotSupportedException
- if something went wrong while cloning the
DifferentiableSequenceScore
Cloneable
public int getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
DifferentiableStatisticalModel
index
, i.e. the product of the
sizes of the alphabets at the position of each random variable affected
by parameter index
. For DNA alphabets this corresponds to 4
for a PWM, 16 for a WAM except position 0, ...
getSizeOfEventSpaceForRandomVariablesOfParameter
in interface DifferentiableStatisticalModel
index
- the index of the parameter
public double getLogNormalizationConstant()
DifferentiableStatisticalModel
getLogNormalizationConstant
in interface DifferentiableStatisticalModel
public double getLogPartialNormalizationConstant(int parameterIndex) throws Exception
DifferentiableStatisticalModel
parameterIndex
. This is the logarithm of the partial derivation of the
normalization constant for the parameter with index
parameterIndex
,
getLogPartialNormalizationConstant
in interface DifferentiableStatisticalModel
parameterIndex
- the index of the parameter
Exception
- if something went wrong with the normalizationDifferentiableStatisticalModel.getLogNormalizationConstant()
public double getESS()
DifferentiableStatisticalModel
getESS
in interface DifferentiableStatisticalModel
protected void extractFurtherInformation(StringBuffer rep) throws NonParsableException
IndependentProductDiffSS
IndependentProductDiffSS.getFurtherInformation()
. It
extracts further information of the instance from a XML representation.
extractFurtherInformation
in class IndependentProductDiffSS
rep
- the StringBuffer
containing the information to be
extracted as XML code
NonParsableException
- if the StringBuffer
could not be parsedpublic String getInstanceName()
SequenceScore
getInstanceName
in interface SequenceScore
getInstanceName
in class IndependentProductDiffSS
public int getNumberOfParameters()
DifferentiableSequenceScore
DifferentiableSequenceScore
. If the
number of parameters is not known yet, the method returns
DifferentiableSequenceScore.UNKNOWN
.
getNumberOfParameters
in interface DifferentiableSequenceScore
getNumberOfParameters
in class IndependentProductDiffSS
DifferentiableSequenceScore
DifferentiableSequenceScore.UNKNOWN
public int getNumberOfRecommendedStarts()
DifferentiableSequenceScore
getNumberOfRecommendedStarts
in interface DifferentiableSequenceScore
getNumberOfRecommendedStarts
in class IndependentProductDiffSS
public void setParameters(double[] params, int start)
DifferentiableSequenceScore
params
between start
and
start + DifferentiableSequenceScore.getNumberOfParameters()
- 1
setParameters
in interface DifferentiableSequenceScore
setParameters
in class IndependentProductDiffSS
params
- the new parametersstart
- the start index in params
protected StringBuffer getFurtherInformation()
IndependentProductDiffSS
getFurtherInformation
in class IndependentProductDiffSS
StringBuffer
public double getLogPriorTerm()
DifferentiableStatisticalModel
DifferentiableStatisticalModel.getESS()
* DifferentiableStatisticalModel.getLogNormalizationConstant()
+ Math.log( prior )
prior
is the prior for the parameters of this model.
getLogPriorTerm
in interface DifferentiableStatisticalModel
getLogPriorTerm
in interface StatisticalModel
DifferentiableStatisticalModel.getESS()
* DifferentiableStatisticalModel.getLogNormalizationConstant()
+ Math.log( prior ).
DifferentiableStatisticalModel.getESS()
,
DifferentiableStatisticalModel.getLogNormalizationConstant()
public void addGradientOfLogPriorTerm(double[] grad, int start) throws Exception
DifferentiableStatisticalModel
DifferentiableStatisticalModel.getLogPriorTerm()
for each
parameter of this model. The results are added to the array
grad
beginning at index start
.
addGradientOfLogPriorTerm
in interface DifferentiableStatisticalModel
grad
- the array of gradientsstart
- the start index in the grad
array, where the
partial derivations for the parameters of this models shall be
entered
Exception
- if something went wrong with the computing of the gradientsDifferentiableStatisticalModel.getLogPriorTerm()
public double getLogProbFor(Sequence sequence, int startpos) throws Exception
StatisticalModel
startpos
. E.g. the fixed length is 12. The length
of the given sequence is 30 and the startpos
=15 the logarithm
of the probability of the part from position 15 to 26 (inclusive) given
the model should be returned.
length
and the alphabets
define the type of
data that can be modeled and therefore both has to be checked.
getLogProbFor
in interface StatisticalModel
sequence
- the given sequencestartpos
- the start position within the given sequence
Exception
- if the sequence could not be handled by the model
NotTrainedException
- if the model is not trained yetStatisticalModel.getLogProbFor(Sequence, int, int)
public double getLogProbFor(Sequence sequence) throws Exception
StatisticalModel
length
and the alphabets
define the type of
data that can be modeled and therefore both has to be checked.
getLogProbFor
in interface StatisticalModel
sequence
- the given sequence for which the logarithm of the
probability/the value of the density function should be
returned
Exception
- if the sequence could not be handled by the model
NotTrainedException
- if the model is not trained yetStatisticalModel.getLogProbFor(Sequence, int, int)
public double getLogProbFor(Sequence sequence, int startpos, int endpos) throws Exception
StatisticalModel
StatisticalModel.getLogProbFor(Sequence, int)
by the fact, that the model could be
e.g. homogeneous and therefore the length of the sequences, whose
probability should be returned, is not fixed. Additionally, the end
position of the part of the given sequence is given and the probability
of the part from position startpos
to endpos
(inclusive) should be returned.
length
and the alphabets
define the type of
data that can be modeled and therefore both has to be checked.
getLogProbFor
in interface StatisticalModel
sequence
- the given sequencestartpos
- the start position within the given sequenceendpos
- the last position to be taken into account
Exception
- if the sequence could not be handled (e.g.
startpos >
, endpos
> sequence.length
, ...) by the model
NotTrainedException
- if the model is not trained yetpublic void initializeMotif(int motifIndex, DataSet data, double[] weights) throws Exception
MutableMotifDiscoverer
initializeMotif
in interface MutableMotifDiscoverer
motifIndex
- the index of the motif in the motif discovererdata
- the sample of sequencesweights
- either null
or an array of length data.getNumberofElements()
with non-negative weights.
Exception
- if initialize was not possiblepublic void initializeMotifRandomly(int motif) throws Exception
MutableMotifDiscoverer
motif
randomly using for instance DifferentiableSequenceScore.initializeFunctionRandomly(boolean)
.
Furthermore, if available, it also initializes the positional distribution.
initializeMotifRandomly
in interface MutableMotifDiscoverer
motif
- the index of the motif
Exception
- either if the index is wrong or if it is thrown by the method DifferentiableSequenceScore.initializeFunctionRandomly(boolean)
public boolean modifyMotif(int motifIndex, int offsetLeft, int offsetRight) throws Exception
MutableMotifDiscoverer
motifIndex
. The two offsets offsetLeft
and offsetRight
define how many positions the left or right border positions shall be moved. Negative numbers indicate moves to the left while positive
numbers correspond to moves to the right. The distribution for sequences to the left and right side of the motif shall be computed internally.
modifyMotif
in interface MutableMotifDiscoverer
motifIndex
- the index of the motif in the motif discovereroffsetLeft
- the offset on the left sideoffsetRight
- the offset on the right side
true
if the motif model was modified otherwise false
Exception
- if some unexpected error occurred during the modificationMutableMotifDiscoverer.modifyMotif(int, int, int)
,
Mutable.modify(int, int)
public int getGlobalIndexOfMotifInComponent(int component, int motif)
MotifDiscoverer
motif
used in
component
. The index returned must be at least 0 and less
than MotifDiscoverer.getNumberOfMotifs()
.
getGlobalIndexOfMotifInComponent
in interface MotifDiscoverer
component
- the component indexmotif
- the motif index in the component
motif in component
getIndexOfMaximalComponentFor
public int getIndexOfMaximalComponentFor(Sequence sequence)
throws Exception
- Description copied from interface:
MotifDiscoverer
- Returns the index of the component with the maximal score for the
sequence
sequence
.
- Specified by:
getIndexOfMaximalComponentFor
in interface MotifDiscoverer
- Parameters:
sequence
- the given sequence
- Returns:
- the index of the component with the maximal score for the given
sequence
- Throws:
Exception
- if the index could not be computed for any reasons
getMotifLength
public int getMotifLength(int motif)
- Description copied from interface:
MotifDiscoverer
- This method returns the length of the motif with index
motif
.
- Specified by:
getMotifLength
in interface MotifDiscoverer
- Parameters:
motif
- the index of the motif
- Returns:
- the length of the motif with index
motif
getNumberOfComponents
public int getNumberOfComponents()
- Description copied from interface:
MotifDiscoverer
- Returns the number of components in this
MotifDiscoverer
.
- Specified by:
getNumberOfComponents
in interface MotifDiscoverer
- Returns:
- the number of components
getNumberOfMotifs
public int getNumberOfMotifs()
- Description copied from interface:
MotifDiscoverer
- Returns the number of motifs for this
MotifDiscoverer
.
- Specified by:
getNumberOfMotifs
in interface MotifDiscoverer
- Returns:
- the number of motifs
getNumberOfMotifsInComponent
public int getNumberOfMotifsInComponent(int component)
- Description copied from interface:
MotifDiscoverer
- Returns the number of motifs that are used in the component
component
of this MotifDiscoverer
.
- Specified by:
getNumberOfMotifsInComponent
in interface MotifDiscoverer
- Parameters:
component
- the component of the MotifDiscoverer
- Returns:
- the number of motifs
getProfileOfScoresFor
public double[] getProfileOfScoresFor(int component,
int motif,
Sequence sequence,
int startpos,
MotifDiscoverer.KindOfProfile dist)
throws Exception
- Description copied from interface:
MotifDiscoverer
- Returns the profile of the scores for component
component
and motif motif
at all possible start positions of the motif
in the sequence sequence
beginning at startpos
.
This array should be of length
sequence.length() - startpos - motifs[motif].length() + 1
.
A high score should encode for a probable start position.
- Specified by:
getProfileOfScoresFor
in interface MotifDiscoverer
- Parameters:
component
- the component indexmotif
- the index of the motif in the componentsequence
- the given sequencestartpos
- the start position in the sequencedist
- indicates the kind of profile
- Returns:
- the profile of scores
- Throws:
Exception
- if the score could not be computed for any reasons
getStrandProbabilitiesFor
public double[] getStrandProbabilitiesFor(int component,
int motif,
Sequence sequence,
int startpos)
throws Exception
- Description copied from interface:
MotifDiscoverer
- This method returns the probabilities of the strand orientations for a given subsequence if it is
considered as site of the motif model in a specific component.
- Specified by:
getStrandProbabilitiesFor
in interface MotifDiscoverer
- Parameters:
component
- the component indexmotif
- the index of the motif in the componentsequence
- the given sequencestartpos
- the start position in the sequence
- Returns:
- the probabilities of the strand orientations
- Throws:
Exception
- if the strand could not be computed for any reasons
isNormalized
public boolean isNormalized()
- Description copied from interface:
DifferentiableStatisticalModel
- This method indicates whether the implemented score is already normalized
to 1 or not. The standard implementation returns
false
.
- Specified by:
isNormalized
in interface DifferentiableStatisticalModel
- Returns:
true
if the implemented score is already normalized
to 1, false
otherwise
adjustHiddenParameters
public void adjustHiddenParameters(int index,
DataSet[] data,
double[][] weights)
throws Exception
- Description copied from interface:
MutableMotifDiscoverer
- Adjusts all hidden parameters including duration and mixture parameters according to the current values of the remaining parameters.
- Specified by:
adjustHiddenParameters
in interface MutableMotifDiscoverer
- Parameters:
index
- the index of the class of this MutableMotifDiscoverer
data
- the array of data for all classesweights
- the weights for all sequences in data
- Throws:
Exception
- thrown if the hidden parameters could not be adjusted
emitDataSet
public DataSet emitDataSet(int numberOfSequences,
int... seqLength)
throws NotTrainedException,
Exception
- Description copied from interface:
StatisticalModel
- This method returns a
DataSet
object containing artificial
sequence(s).
There are two different possibilities to create a sample for a model with
length 0 (homogeneous models).
-
emitDataSet( int n, int l )
should return a data set with
n
sequences of length l
.
-
emitDataSet( int n, int[] l )
should return a data set with
n
sequences which have a sequence length corresponding to
the entry in the given array l
.
There are two different possibilities to create a sample for a model with
length greater than 0 (inhomogeneous models).
emitDataSet( int n )
and
emitDataSet( int n, null )
should return a sample with
n
sequences of length of the model (
SequenceScore.getLength()
).
The standard implementation throws an Exception
.
- Specified by:
emitDataSet
in interface StatisticalModel
- Parameters:
numberOfSequences
- the number of sequences that should be contained in the
returned sampleseqLength
- the length of the sequences for a homogeneous model; for an
inhomogeneous model this parameter should be null
or an array of size 0.
- Returns:
- a
DataSet
containing the artificial sequence(s)
- Throws:
NotTrainedException
- if the model is not trained yet
Exception
- if the emission did not succeed- See Also:
DataSet
getMaximalMarkovOrder
public byte getMaximalMarkovOrder()
throws UnsupportedOperationException
- Description copied from interface:
StatisticalModel
- This method returns the maximal used Markov order, if possible.
- Specified by:
getMaximalMarkovOrder
in interface StatisticalModel
- Returns:
- maximal used Markov order
- Throws:
UnsupportedOperationException
- if the model can't give a proper answer
Overview
Package
Class
Use
Tree
Deprecated
Index
Help
PREV CLASS
NEXT CLASS
FRAMES
NO FRAMES
All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD
DETAIL: FIELD | CONSTR | METHOD