|
||||||||||
PREV LETTER NEXT LETTER | FRAMES NO FRAMES All Classes |
DataSet
object containing artificial
sequence(s).
DataSet
object containing artificial
sequence(s).
DataSet
of a given number of Sequence
s from a
trained homogeneous model.
n sequences from the discrete inhomogeneous model m
.
emitDataSetUsingCurrentParameterSet(int, int...) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
The method returns an array of sequences using the current parameter set.
emitDataSetUsingCurrentParameterSet(int, int...) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.MixtureTrainSM
emitDataSetUsingCurrentParameterSet(int, int...) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.HiddenMotifMixture
Standard implementation throwing an
OperationNotSupportedException
.
emitDataSetUsingCurrentParameterSet(int, int...) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
emitSymbol(int[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
EmptyDataSetException - Exception in de.jstacs.data
An EmptyDataSetException
will be thrown if no Sequence
is in a
DataSet
(i.e. the DataSet
is empty).
EmptyDataSetException() -
Constructor for exception de.jstacs.data.EmptyDataSetException
This constructor creates an instance with default error message
("The created DataSet is empty.
encode(int[][]) -
Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters.FSDAGTrainSMParameterSet
This method can be used to encode an adjacency list to a graph
description String
(e.g. for the different constructors which
requires graph description String
s).
enumerate(DifferentiableSequenceScore[], int, int, RecyclableSequenceEnumerator, double, DiffSSBasedOptimizableFunction, OutputStream) -
Static method in class de.jstacs.motifDiscovery.MutableMotifDiscovererToolbox
This method allows to enumerate all possible seeds for a motif in the MutableMotifDiscoverer
of a specific class.
enumerate(DifferentiableSequenceScore[], int[], int[], RecyclableSequenceEnumerator[], double, DiffSSBasedOptimizableFunction, OutputStream) -
Static method in class de.jstacs.motifDiscovery.MutableMotifDiscovererToolbox
This method allows to enumerate all possible seeds for a number of motifs in the MutableMotifDiscoverer
s of a specific classes.
enumerateHP(Tensor) -
Static method in class de.jstacs.algorithms.graphs.DAG
The method computes the HP(k) (see DAG
).
EnumParameter - Class in de.jstacs.parameters
This class implements a SelectionParameter
based on an Enum
.
EnumParameter(Class<? extends Enum>, String, boolean) -
Constructor for class de.jstacs.parameters.EnumParameter
The main constructor.
EnumParameter(Class<? extends Enum>, String, boolean, String) -
Constructor for class de.jstacs.parameters.EnumParameter
This constructor creates an instance and set the default value.
EnumParameter(StringBuffer) -
Constructor for class de.jstacs.parameters.EnumParameter
The standard constructor for the interface Storable
.
eps -
Variable in class de.jstacs.algorithms.optimization.NumericalDifferentiableFunction
The constant used in the computation of the gradient.
EqualParts - Class in de.jstacs.utils.random
This class is no real random generator it just returns 1/n for all values.
EqualParts() -
Constructor for class de.jstacs.utils.random.EqualParts
equals(Object) -
Method in class de.jstacs.data.sequences.Sequence
equals(Object) -
Method in class de.jstacs.parameters.AbstractSelectionParameter
equals(Object) -
Method in class de.jstacs.parameters.SequenceScoringParameterSet
equals(Object) -
Method in class de.jstacs.parameters.SimpleParameter
EQUALS -
Static variable in interface de.jstacs.parameters.validation.Constraint
The condition is equality
equals(Object) -
Method in class de.jstacs.results.SimpleResult
equals(Object) -
Method in class de.jstacs.utils.IntList
ErlangMRG - Class in de.jstacs.utils.random
This class is a multivariate random generator based on a Dirichlet
distribution for alpha_i \in N
.
ErlangMRG() -
Constructor for class de.jstacs.utils.random.ErlangMRG
Constructor that creates a new multivariate random generator with
underlying Erlang distribution.
ErlangMRGParams - Class in de.jstacs.utils.random
The container for parameters of an Erlang multivariate random generator.
ErlangMRGParams(int, int) -
Constructor for class de.jstacs.utils.random.ErlangMRGParams
Constructor which creates a new hyperparameter vector for an Erlang
random generator.
ErlangMRGParams(int[]) -
Constructor for class de.jstacs.utils.random.ErlangMRGParams
Constructor which creates a new hyperparameter vector for an Erlang
random generator.
errorMessage -
Variable in class de.jstacs.parameters.AbstractSelectionParameter
If a value was illegal for the collection parameter, this field holds the
error message.
errorMessage -
Variable in class de.jstacs.parameters.ParameterSet
The error message of the last error or null
errorMessage -
Variable in class de.jstacs.parameters.ParameterSetContainer
The message of the last error or null
if no error occurred.
ess -
Variable in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
The equivalent sample size.
ess -
Variable in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
The equivalent sample size.
ess -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
The equivalent sample size used for the prior
ess -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
The equivalent sample sizes for each condition
ess -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ReferenceBasedTransitionElement
The equivalent sample size (ess) used in the prior of this instance.
estimate(double) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
Estimates the (smoothed) relative frequencies using the ess
(equivalent sample size).
estimate(double) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM.HomCondProb
estimate(double) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhCondProb
estimate(double) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMConstraint
estimateComponentProbs -
Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
The switch for estimating the component probabilities or not.
estimateFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
estimateFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
estimateFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.PhyloDiscreteEmission
estimateFromStatistic() -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.Emission
This method estimates the parameters from the internal sufficient statistic.
estimateFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.MixtureEmission
estimateFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
estimateFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
estimateFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method estimates the parameters from the sufficient statistic.
estimateFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
estimateFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.DistanceBasedScaledTransitionElement
estimateFromStatistic() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ScaledTransitionElement
estimateFromStatistic() -
Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.TrainableTransition
This method estimates the parameter of the transition using the internal sufficient statistic.
estimateFromStatistics() -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
This method estimates the parameters of all emissions and the transition using their sufficient statistics.
estimateParameters(DataSet, double[]) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM
This method estimates the parameter of the model from the likelihood or
the posterior, respectively.
estimateUnConditional(int, int, double, boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
Estimates unconditionally.
estimateUnConditional(int, int, double, boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM.HomCondProb
estimateUnConditional(double, double) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhCondProb
Estimates the unconditional frequencies using the ess (equivalent
sample size).
estimateUnConditional(int, int, double, boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhCondProb
eval(String) -
Method in class de.jstacs.utils.REnvironment
Evaluates the String
as R commands.
evaluate(PerformanceMeasureParameterSet, boolean, DataSet...) -
Method in class de.jstacs.classifiers.AbstractClassifier
This method evaluates the classifier and computes, for instance, the sensitivity for a given specificity, the
area under the ROC curve and so on.
evaluateClassifier(NumericalPerformanceMeasureParameterSet, ClassifierAssessmentAssessParameterSet, DataSet[], ProgressUpdater) -
Method in class de.jstacs.classifiers.assessment.ClassifierAssessment
This method must be implemented in all subclasses.
evaluateClassifier(NumericalPerformanceMeasureParameterSet, ClassifierAssessmentAssessParameterSet, DataSet[], ProgressUpdater) -
Method in class de.jstacs.classifiers.assessment.KFoldCrossValidation
Evaluates a classifier.
evaluateClassifier(NumericalPerformanceMeasureParameterSet, ClassifierAssessmentAssessParameterSet, DataSet[], ProgressUpdater) -
Method in class de.jstacs.classifiers.assessment.RepeatedHoldOutExperiment
Evaluates the classifier.
evaluateClassifier(NumericalPerformanceMeasureParameterSet, ClassifierAssessmentAssessParameterSet, DataSet[], ProgressUpdater) -
Method in class de.jstacs.classifiers.assessment.RepeatedSubSamplingExperiment
Evaluates the classifier.
evaluateClassifier(NumericalPerformanceMeasureParameterSet, ClassifierAssessmentAssessParameterSet, DataSet[], ProgressUpdater) -
Method in class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutExperiment
evaluateFunction(double[]) -
Method in interface de.jstacs.algorithms.optimization.Function
Evaluates the function at a certain vector (in mathematical sense)
x
.
evaluateFunction(double[]) -
Method in class de.jstacs.algorithms.optimization.NegativeDifferentiableFunction
evaluateFunction(double[]) -
Method in class de.jstacs.algorithms.optimization.NegativeFunction
evaluateFunction(double[]) -
Method in class de.jstacs.algorithms.optimization.NegativeOneDimensionalFunction
evaluateFunction(double) -
Method in class de.jstacs.algorithms.optimization.NegativeOneDimensionalFunction
evaluateFunction(double[]) -
Method in class de.jstacs.algorithms.optimization.OneDimensionalFunction
evaluateFunction(double) -
Method in class de.jstacs.algorithms.optimization.OneDimensionalFunction
Evaluates the function at position x
.
evaluateFunction(double) -
Method in class de.jstacs.algorithms.optimization.OneDimensionalSubFunction
evaluateFunction(double) -
Method in class de.jstacs.algorithms.optimization.QuadraticFunction
evaluateFunction(double[]) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
evaluateFunction(int, int, int, int, int) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
This method evaluates the function for a part of the data.
evaluateFunction(int, int, int, int, int) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.LogGenDisMixFunction
evaluateFunction(int, int, int, int, int) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.OneDataSetLogGenDisMixFunction
evaluateFunction(double[]) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.CompositeLogPrior
evaluateFunction(double[]) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.DoesNothingLogPrior
evaluateFunction(double[]) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateGaussianLogPrior
evaluateFunction(double[]) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateLaplaceLogPrior
evaluateFunction(double[]) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SimpleGaussianSumLogPrior
evaluateGradientOfFunction(double[]) -
Method in class de.jstacs.algorithms.optimization.DifferentiableFunction
Evaluates the gradient of a function at a certain vector (in mathematical
sense) x
, i.e.,
.
evaluateGradientOfFunction(double[]) -
Method in class de.jstacs.algorithms.optimization.NegativeDifferentiableFunction
evaluateGradientOfFunction(double[]) -
Method in class de.jstacs.algorithms.optimization.NumericalDifferentiableFunction
Evaluates the gradient of a function at a certain vector (in mathematical
sense) x
numerically.
evaluateGradientOfFunction(double[]) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
evaluateGradientOfFunction(int, int, int, int, int) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
This method evaluates the gradient of the function for a part of the data.
evaluateGradientOfFunction(int, int, int, int, int) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.LogGenDisMixFunction
evaluateGradientOfFunction(int, int, int, int, int) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.OneDataSetLogGenDisMixFunction
evaluateGradientOfFunction(double[]) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.LogPrior
EvaluationException - Exception in de.jstacs.algorithms.optimization
This class indicates that there was a problem to evaluate a function or the
gradient of the function.
EvaluationException(String) -
Constructor for exception de.jstacs.algorithms.optimization.EvaluationException
This constructor creates an EvaluationException
with given error
message
.
ExpandableParameterSet - Class in de.jstacs.parameters
A class for a ParameterSet
that can be expanded by additional
Parameter
s at runtime.
ExpandableParameterSet(ParameterSet, String, String) -
Constructor for class de.jstacs.parameters.ExpandableParameterSet
Creates a new ExpandableParameterSet
from a Class
that
can be instantiated using this ExpandableParameterSet
and
templates for the ParameterSet
in each element of the array, the
name and the comment that are displayed for the
ParameterSetContainer
s enclosing the ParameterSet
s.
ExpandableParameterSet(ParameterSet, String, String, int) -
Constructor for class de.jstacs.parameters.ExpandableParameterSet
Creates a new ExpandableParameterSet
from a Class
that
can be instantiated using this ExpandableParameterSet
and
templates for the ParameterSet
in each element of the array, the
name and the comment that are displayed for the
ParameterSetContainer
s enclosing the ParameterSet
s.
ExpandableParameterSet(StringBuffer) -
Constructor for class de.jstacs.parameters.ExpandableParameterSet
The standard constructor for the interface Storable
.
ExpandableParameterSet(ParameterSet[], String, String) -
Constructor for class de.jstacs.parameters.ExpandableParameterSet
Creates a new ExpandableParameterSet
from a ParameterSet
-array.
export(String, Result) -
Method in class de.jstacs.utils.galaxy.GalaxyAdaptor
Exports a specified GalaxyAdaptor.LinkedImageResult
of a program execution
to a file provided by filename
and returns the
corresponding Galaxy data type.
ExtendedZOOPSDiffSM - Class in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif
This class handles mixtures with at least one hidden motif.
ExtendedZOOPSDiffSM(boolean, int, int, boolean, HomogeneousDiffSM, DifferentiableStatisticalModel, DurationDiffSM, boolean) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
This constructor creates an instance of ExtendedZOOPSDiffSM
that is either an OOPS or a ZOOPS model depending on the chosen type
.
ExtendedZOOPSDiffSM(boolean, int, int, boolean, HomogeneousDiffSM, DifferentiableStatisticalModel[], DurationDiffSM[], boolean) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
This constructor creates an instance of ExtendedZOOPSDiffSM
that allows to have one site of the specified motifs in a Sequence
.
ExtendedZOOPSDiffSM(StringBuffer) -
Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
This is the constructor for the interface Storable
.
extendSampling(int, boolean) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier.DiffSMSamplingComponent
extendSampling(int, boolean) -
Method in interface de.jstacs.sampling.SamplingComponent
This method allows to extend a sampling.
extendSampling(int, boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGModelForGibbsSampling
extendSampling(int, boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
extendSampling(int, boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
extendSampling(int, boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleSamplingState
extendSampling(int, boolean) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
extendSampling(int) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method prepares the model to extend an existing sampling.
extract(int, String) -
Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.ConstraintManager
Extracts the constraints of a String
and returns an
ArrayList
of int[]
.
extractAdditionalInfo(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
This method parses additional information from the StringBuffer
that is not parsed in the base class.
extractAdditionalInfo(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM.HomCondProb
extractAdditionalInfo(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhCondProb
extractAdditionalInfo(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhConstraint
extractAdditionalInfo(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMConstraint
extractAdditionalInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.GaussianLikePositionPrior
extractAdditionalInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.PositionPrior
This method extracts additional information from a StringBuffer
.
extractAdditionalInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.UniformPositionPrior
extractForTag(StringBuffer, String) -
Static method in class de.jstacs.io.XMLParser
Extracts the contents of source
between tag
start and end tags.
extractForTag(StringBuffer, String, Map<String, String>, Map<String, String>) -
Static method in class de.jstacs.io.XMLParser
Extracts the contents of source
between tag
start and end tags.
extractFurtherClassifierInfosFromXML(StringBuffer) -
Method in class de.jstacs.classifiers.AbstractClassifier
Extracts further information of a classifier from an XML representation.
extractFurtherClassifierInfosFromXML(StringBuffer) -
Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
extractFurtherClassifierInfosFromXML(StringBuffer) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
extractFurtherClassifierInfosFromXML(StringBuffer) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifier
extractFurtherClassifierInfosFromXML(StringBuffer) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
extractFurtherClassifierInfosFromXML(StringBuffer) -
Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
extractFurtherClassifierInfosFromXML(StringBuffer) -
Method in class de.jstacs.classifiers.MappingClassifier
extractFurtherClassifierInfosFromXML(StringBuffer) -
Method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
extractFurtherClassifierInfosFromXML(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureClassifier
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
This method is the opposite of IndependentProductDiffSS.getFurtherInformation()
.
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.differentiable.UniformDiffSS
This method is the opposite of UniformDiffSS.getFurtherInformation()
.
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
This method is the opposite of AbstractMixtureDiffSM.getFurtherInformation()
.
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method extracts further information from the XML representation.
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
This method extracts further information from the XML representation.
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
This method extracts further information from the XML representation.
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.PhyloDiscreteEmission
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.ReferenceSequenceDiscreteEmission
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method extracts further information from the XML representation.
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
This method extracts further information from the XML representation.
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.BasicPluginTransitionElement
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.BasicTransitionElement
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.DistanceBasedScaledTransitionElement
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ReferenceBasedTransitionElement
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ScaledTransitionElement
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method is used in the subclasses to extract further information from
the XML representation and to set these as values of the instance.
extractFurtherInformation(StringBuffer) -
Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.HiddenMotifMixture
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.AnnotatedEntity
This method can be used in the constructor with parameter StringBuffer
to
extract the further information.
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier.DoubleTableResult
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.parameters.AbstractSelectionParameter
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.parameters.EnumParameter
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.parameters.FileParameter
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.parameters.MultiSelectionParameter
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.parameters.Parameter
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.parameters.ParameterSetContainer
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.parameters.RangeParameter
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.parameters.SelectionParameter
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.parameters.SimpleParameter
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.results.DataSetResult
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.results.ImageResult
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.results.ListResult
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.results.SimpleResult
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.results.StorableResult
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.utils.galaxy.GalaxyAdaptor.FileResult
extractFurtherInfos(StringBuffer) -
Method in class de.jstacs.utils.galaxy.GalaxyAdaptor.LinkedImageResult
extractObjectAndAttributesForTags(StringBuffer, String, Map<String, String>, Map<String, String>) -
Static method in class de.jstacs.io.XMLParser
Returns the parsed value between the tags.
extractObjectAndAttributesForTags(StringBuffer, String, Map<String, String>, Map<String, String>, Class<T>) -
Static method in class de.jstacs.io.XMLParser
Returns the parsed value between the tags.
extractObjectAndAttributesForTags(StringBuffer, String, Map<String, String>, Map<String, String>, Class<T>, Class<S>, S) -
Static method in class de.jstacs.io.XMLParser
Returns the parsed value between the tags as an inner instance of the object outerInstance
.
extractObjectForTags(StringBuffer, String) -
Static method in class de.jstacs.io.XMLParser
Returns the parsed value between the tags.
extractObjectForTags(StringBuffer, String, Class<T>) -
Static method in class de.jstacs.io.XMLParser
Returns the parsed value between the tags.
extractSequenceParts(int, DataSet[], DataSet[]) -
Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
This method extracts the corresponding Sequence
parts for a specific DifferentiableSequenceScore
.
extractWeights(int, double[][]) -
Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
This method creates the weights for IndependentProductDiffSS.extractSequenceParts(int, DataSet[], DataSet[])
.
Overview
Package
Class
Use
Tree
Deprecated
Index
Help
PREV LETTER
NEXT LETTER
FRAMES
NO FRAMES
All Classes
A B C D E F G H I J K L M N O P Q R S T U V W X Z