|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectde.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGTrainSM
public class FSDAGTrainSM
This class can be used for any discrete fixed structure
directed acyclic graphical model ( FSDAGTrainSM
).
Field Summary |
---|
Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM |
---|
constraints |
Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM |
---|
DEFAULT_STREAM, sostream |
Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM |
---|
params, trained |
Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel |
---|
alphabets, length |
Constructor Summary | |
---|---|
FSDAGTrainSM(FSDAGTrainSMParameterSet params)
This is the main constructor. |
|
FSDAGTrainSM(StringBuffer xml)
The standard constructor for the interface Storable . |
Method Summary | |
---|---|
void |
drawParameters(DataSet data,
double[] weights,
int[][] graph)
This method draws the parameters of the model from the a posteriori density. |
String |
getInstanceName()
Should return a short instance name such as iMM(0), BN(2), ... |
byte |
getMaximalMarkovOrder()
This method returns the maximal used Markov order, if possible. |
String |
getStructure()
Returns a String representation of the underlying graph. |
protected String |
getXMLTag()
Returns the XML tag that is used for this model in DiscreteGraphicalTrainSM.fromXML(StringBuffer) and DiscreteGraphicalTrainSM.toXML() . |
protected void |
set(DGTrainSMParameterSet params,
boolean trained)
Sets the parameters as internal parameters and does some essential computations. |
void |
train(DataSet data,
double[] weights)
Trains the TrainableStatisticalModel object given the data as DataSet using
the specified weights. |
void |
train(DataSet data,
double[] weights,
int[][] graph)
Computes the model with structure graph . |
static void |
train(TrainableStatisticalModel[] models,
int[][] graph,
double[][] weights,
DataSet... data)
Computes the models with structure graph . |
Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM |
---|
checkAcyclic, clone, createConstraints, drawParameters, emitDataSet, estimateParameters, getFurtherModelInfos, getLogPriorTerm, getLogProbFor, getNumericalCharacteristics, setFurtherModelInfos, toString |
Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM |
---|
check, setOutputStream |
Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM |
---|
fromXML, getCurrentParameterSet, getDescription, getESS, isInitialized, toXML |
Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel |
---|
getAlphabetContainer, getCharacteristics, getLength, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, train |
Methods inherited from class java.lang.Object |
---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
---|
public FSDAGTrainSM(FSDAGTrainSMParameterSet params) throws CloneNotSupportedException, IllegalArgumentException, NonParsableException
FSDAGTrainSM
from
the given FSDAGTrainSMParameterSet
.
params
- the given parameter set
CloneNotSupportedException
- if the parameter set could not be cloned
IllegalArgumentException
- if the parameter set is not instantiated
NonParsableException
- if the parameter set is not parsableDAGTrainSM.DAGTrainSM(de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters.IDGTrainSMParameterSet)
public FSDAGTrainSM(StringBuffer xml) throws NonParsableException
Storable
.
Creates a new FSDAGTrainSM
out of its XML representation.
xml
- the XML representation as StringBuffer
NonParsableException
- if the FSDAGTrainSM
could not be reconstructed out of
the XML representation (the StringBuffer
could not be
parsed)Storable
,
DAGTrainSM.DAGTrainSM(StringBuffer)
Method Detail |
---|
public String getInstanceName()
SequenceScore
public byte getMaximalMarkovOrder()
StatisticalModel
getMaximalMarkovOrder
in interface StatisticalModel
getMaximalMarkovOrder
in class AbstractTrainableStatisticalModel
protected String getXMLTag()
DiscreteGraphicalTrainSM
DiscreteGraphicalTrainSM.fromXML(StringBuffer)
and DiscreteGraphicalTrainSM.toXML()
.
getXMLTag
in class DiscreteGraphicalTrainSM
DiscreteGraphicalTrainSM.fromXML(StringBuffer)
and
DiscreteGraphicalTrainSM.toXML()
DiscreteGraphicalTrainSM.fromXML(StringBuffer)
,
DiscreteGraphicalTrainSM.toXML()
public void train(DataSet data, double[] weights) throws Exception
TrainableStatisticalModel
TrainableStatisticalModel
object given the data as DataSet
using
the specified weights. The weight at position i belongs to the element at
position i. So the array weight
should have the number of
sequences in the sample as dimension. (Optionally it is possible to use
weight == null
if all weights have the value one.)train(data1)
; train(data2)
should be a fully trained model over data2
and not over
data1+data2
. All parameters of the model were given by the
call of the constructor.
data
- the given sequences as DataSet
weights
- the weights of the elements, each weight should be
non-negative
Exception
- if the training did not succeed (e.g. the dimension of
weights
and the number of sequences in the
sample do not match)DataSet.getElementAt(int)
,
DataSet.ElementEnumerator
public void train(DataSet data, double[] weights, int[][] graph) throws Exception
graph
.
data
- the DataSet
weights
- the weights for the sequences in the DataSet
graph
- the graph
Exception
- if something went wrongpublic void drawParameters(DataSet data, double[] weights, int[][] graph) throws Exception
null
. Furthermore this method enables you to
specify a new graph structure.
data
- a DataSet
or null
weights
- the (positive) weights for each sequence of the DataSet
or null
graph
- the graph or null
for the current graph
Exception
- if something went wrongDAGTrainSM.drawParameters(DataSet, double[])
,
DAGTrainSM.checkAcyclic(int, int[][])
public static void train(TrainableStatisticalModel[] models, int[][] graph, double[][] weights, DataSet... data) throws Exception
graph
.
models
- an array of AbstractTrainableStatisticalModel
s containing
only instances of FSDAGTrainSM
data
- the DataSet
weights
- the weights for the sequences in the DataSet
graph
- the graph
Exception
- if something went wrongprotected void set(DGTrainSMParameterSet params, boolean trained) throws CloneNotSupportedException, NonParsableException
DiscreteGraphicalTrainSM
fromParameterSet
-methods.
set
in class InhomogeneousDGTrainSM
params
- the new ParameterSet
trained
- indicates if the model is trained or not
CloneNotSupportedException
- if the parameter set could not be cloned
NonParsableException
- if the parameters of the model could not be parsedpublic String getStructure()
InhomogeneousDGTrainSM
String
representation of the underlying graph.
getStructure
in class DAGTrainSM
String
representation of the underlying graph
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |