|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectde.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
public abstract class DurationDiffSM
This class is the super class for all one dimensional position scoring functions that can be used as durations for semi Markov models.
ExtendedZOOPSDiffSM
Field Summary | |
---|---|
protected int |
delta
The difference of maximal and minimal value. |
protected double |
ess
The equivalent sample size. |
protected int |
max
The maximal value. |
protected int |
min
The minimal value. |
Fields inherited from class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM |
---|
internal |
Fields inherited from class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore |
---|
alphabets, length, r |
Fields inherited from interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore |
---|
UNKNOWN |
Constructor Summary | |
---|---|
protected |
DurationDiffSM(int min,
int max,
double ess)
The default constructor. |
protected |
DurationDiffSM(StringBuffer source)
This is the constructor for Storable . |
Method Summary | |
---|---|
abstract void |
adjust(int[] length,
double[] weight)
This method adjust the parameter based on the given statistic. |
protected void |
fromXML(StringBuffer xml)
This method is called in the constructor for the Storable
interface to create a scoring function from a StringBuffer . |
double |
getESS()
Returns the equivalent sample size (ess) of this model, i.e. the equivalent sample size for the class or component that is represented by this model. |
double |
getLogNormalizationConstant()
Returns the logarithm of the sum of the scores over all sequences of the event space. |
double |
getLogPartialNormalizationConstant(int parameterIndex)
Returns the logarithm of the partial normalization constant for the parameter with index parameterIndex . |
int |
getMax()
Returns the maximal value that can be scored. |
int |
getMin()
Returns the minimal value that can be scored. |
int |
getNumberOfPossibilities()
Returns the number of different possibilities that can be scored. |
protected abstract String |
getRNotation(String distributionName)
This method returns the distribution in R notation. |
int |
getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
Returns the size of the event space of the random variables that are affected by parameter no. |
abstract void |
initializeUniformly()
This method set special parameters that lead to an uniform distribution. |
boolean |
isPossible(int... positions)
This method returns true if the given positions are in the domain of the
PositionDiffSM. |
void |
modify(int delta)
This method modifies the underlying AlphabetContainer . |
boolean |
next()
This method steps to the next reasonable outcome if possible. |
void |
reset()
This method resets the iterator to the initial state (first reasonable output) so that it can be used again. |
String |
toString()
|
StringBuffer |
toXML()
This method returns an XML representation as StringBuffer of an
instance of the implementing class. |
Methods inherited from class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM |
---|
clone, getInternalPosition, getLogScore, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivationForInternal, getLogScoreFor, getLogScoreForInternal, getValuesFromSequence |
Methods inherited from class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel |
---|
emitDataSet, getInitialClassParam, getLogProbFor, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, getMaximalMarkovOrder, isNormalized, isNormalized |
Methods inherited from class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore |
---|
getAlphabetContainer, getCharacteristics, getLength, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getLogScoreFor, getLogScoreFor, getNumberOfRecommendedStarts, getNumberOfStarts, getNumericalCharacteristics |
Methods inherited from class java.lang.Object |
---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Methods inherited from interface de.jstacs.sequenceScores.statisticalModels.differentiable.DifferentiableStatisticalModel |
---|
addGradientOfLogPriorTerm, getLogPriorTerm |
Methods inherited from interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore |
---|
getCurrentParameterValues, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getNumberOfParameters, getNumberOfRecommendedStarts, initializeFunction, initializeFunctionRandomly, setParameters |
Methods inherited from interface de.jstacs.sequenceScores.SequenceScore |
---|
getAlphabetContainer, getCharacteristics, getInstanceName, getLength, getLogScoreFor, getLogScoreFor, getNumericalCharacteristics, isInitialized |
Field Detail |
---|
protected double ess
protected int min
protected int max
protected int delta
Constructor Detail |
---|
protected DurationDiffSM(int min, int max, double ess)
min
- the minimal valuemax
- the maximal valueess
- the equivalent sample sizeprotected DurationDiffSM(StringBuffer source) throws NonParsableException
Storable
. Creates a new
DurationDiffSM
out of a StringBuffer
.
source
- the XML representation as StringBuffer
NonParsableException
- if the XML representation could not be parsedMethod Detail |
---|
public StringBuffer toXML()
Storable
StringBuffer
of an
instance of the implementing class.
toXML
in interface Storable
toXML
in class PositionDiffSM
protected void fromXML(StringBuffer xml) throws NonParsableException
AbstractDifferentiableSequenceScore
Storable
interface to create a scoring function from a StringBuffer
.
fromXML
in class PositionDiffSM
xml
- the XML representation as StringBuffer
NonParsableException
- if the StringBuffer
could not be parsedAbstractDifferentiableSequenceScore.AbstractDifferentiableSequenceScore(StringBuffer)
public void reset()
PositionDiffSM
reset
in class PositionDiffSM
public boolean next()
PositionDiffSM
next
in class PositionDiffSM
true
if a next reasonable outcome could be set, otherwise false
public int getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
DifferentiableStatisticalModel
index
, i.e. the product of the
sizes of the alphabets at the position of each random variable affected
by parameter index
. For DNA alphabets this corresponds to 4
for a PWM, 16 for a WAM except position 0, ...
index
- the index of the parameter
public final double getESS()
DifferentiableStatisticalModel
public boolean isPossible(int... positions)
PositionDiffSM
true
if the given positions
are in the domain of the
PositionDiffSM.
isPossible
in class PositionDiffSM
positions
- the positions to be tested
true
if the given positions
are in the domain of the
PositionDiffSMpublic final int getMin()
public final int getMax()
public int getNumberOfPossibilities()
public abstract void initializeUniformly()
public abstract void adjust(int[] length, double[] weight)
length
- an array containing length valuesweight
- an array containing corresponding weight valuespublic void modify(int delta)
AlphabetContainer
. This might be necessary if the motif length changed.
delta
- the changeMutable.modify(int, int)
,
MutableMotifDiscoverer.modifyMotif(int, int, int)
public final double getLogNormalizationConstant()
DifferentiableStatisticalModel
public final double getLogPartialNormalizationConstant(int parameterIndex) throws Exception
DifferentiableStatisticalModel
parameterIndex
. This is the logarithm of the partial derivation of the
normalization constant for the parameter with index
parameterIndex
,
parameterIndex
- the index of the parameter
Exception
- if something went wrong with the normalizationDifferentiableStatisticalModel.getLogNormalizationConstant()
protected abstract String getRNotation(String distributionName)
distributionName
- the name of the distribution, e.g., "p"
REnvironment
public String toString()
toString
in class Object
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |