getClassifierAnnotation() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
getClassifierAnnotation() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
getClassifierAnnotation() - Method in class de.jstacs.classifiers.MappingClassifier
getClassifierAnnotation() - Method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
getClassifierAnnotation() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureClassifier
getClassifierForBestParameters(GenDisMixClassifierParameterSet) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifier
Returns a standard, i.e., non-sampling,
GenDisMixClassifier
, where the parameters
are set to those that yielded the maximum value of the objective functions among all sampled
parameter values.
getClassifierForMeanParameters(GenDisMixClassifierParameterSet, boolean, int) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifier
Returns a standard, i.e., non-sampling,
GenDisMixClassifier
, where the parameters
are set to the mean values over all sampled
parameter values in the stationary phase.
getClassName() - Method in class de.jstacs.results.StorableResult
Returns the name of the class of the
Storable
corresponding to
the XML representation stored in this
StorableResult
.
getClassParams(double[]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.DiffSSBasedOptimizableFunction
Returns from the complete vector of parameters those that are for the
classes.
getClassWeight(int) - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
Returns the class weight for the class with a given index
.
getClassWeights() - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
getClazz() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTMutualInformation.BTMutualInformationParameterSet
Returns the source of the data to compute the mutual information as
defined by this set of parameters.
getClazz() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMMutualInformation.PMMMutualInformationParameterSet
Returns the source of the data to compute the mutual information as
defined by this set of parameters.
getClusterElements() - Method in class de.jstacs.clustering.hierachical.ClusterTree
Returns the elements at all leaves in this cluster tree, in the order
of the leaves, from left to right.
getClusterRepresentative(ClusterTree<StatisticalModel>, int) - Static method in class de.jstacs.clustering.distances.DeBruijnMotifComparison
Returns a position weight matrix (PWM) representation of the root node of the given cluster tree and
also computed the relative shifts of the motifs such that they align best with the consensus motif at the root.
getCMI(double[][][][][][], double[][][][][][], double) - Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Computes the conditional mutual information from fgStats
and
bgStats
counted on sequences with a total weight of
n
.
getCMI(double[][][][], double[][][][], double, double, double) - Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Computes the conditional mutual information from fgStats
and
bgStats
counted on sequences with a total weight of
nFg
and nBg
, respectively.
getCode(int, String) - Method in class de.jstacs.data.AlphabetContainer
getCode(String) - Method in class de.jstacs.data.alphabets.DiscreteAlphabet
Returns the code of a given symbol.
getCode(String) - Method in class de.jstacs.data.alphabets.DNAAlphabet
getCollectionOfAllMeasures(int, boolean) - Static method in class de.jstacs.classifiers.performanceMeasures.AbstractPerformanceMeasure
getCollectionOfScales() - Static method in class de.jstacs.parameters.RangeParameter
Returns a
EnumParameter
that allows the user to choose
between different scales.
getColor(int) - Static method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor
Returns the color for a specified depth within the parameter hierarchy.
getColumnWidth(int) - Static method in class de.jstacs.utils.SeqLogoPlotter
Returns the width of one column in the sequence logo of the given height for a PWM with the given number of columns.
getCombination() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.CombinationIterator
Returns a clone of the internal combination.
getComment() - Method in class de.jstacs.AnnotatedEntity
getComment(Class<? extends ParameterSet>) - Static method in class de.jstacs.parameters.ParameterSet
Returns a comment for the class.
getComment(ParameterSet) - Static method in class de.jstacs.parameters.ParameterSet
getComments() - Method in enum de.jstacs.data.DinucleotideProperty
Returns additional comments on this property.
getCommonString(DataSet, int, boolean) - Static method in class de.jstacs.motifDiscovery.KMereStatistic
This method returns an array of sequences of length
motifLength
so that each string is contained in all
sequences of the data set, more precisely in the data set or the reverse
complementary data set.
getComplementaryCode(int) - Method in class de.jstacs.data.alphabets.ComplementableDiscreteAlphabet
This method returns the code of the symbol that is the complement of the
symbol encoded by code
.
getComplementaryCode(int) - Method in class de.jstacs.data.alphabets.DNAAlphabet
getComplementaryCode(int) - Method in class de.jstacs.data.alphabets.GenericComplementableDiscreteAlphabet
getComplementaryCode(int) - Method in class de.jstacs.data.alphabets.IUPACDNAAlphabet
getComponents() - Method in class de.jstacs.algorithms.graphs.UnionFind
Returns the connected components of the graph.
getComponentScores(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
Return the scores for the individual components.
getCompositeContainer(int[], int[]) - Method in class de.jstacs.data.AlphabetContainer
getCompositeDataSet(int[], int[]) - Method in class de.jstacs.data.DataSet
This method enables you to use only composite
Sequence
s of all
elements in the current
DataSet
.
getCompositeSequence(AlphabetContainer, int[], int[]) - Method in class de.jstacs.data.sequences.Sequence
getCompositeSequence(int[], int[]) - Method in class de.jstacs.data.sequences.Sequence
getConditionalProbabilities(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
Returns the conditional probabilities for the specified component.
getConditionIndex(boolean, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
This method returns an index encoding the condition.
getConditionIndex(boolean, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.DiscreteEmission
getConditionIndex(boolean, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.ReferenceSequenceDiscreteEmission
getConsensus(AlphabetContainer, double[][]) - Static method in class de.jstacs.utils.PFMComparator
This method extracts the
The method does not use any degenerated IUPAC code.
getConservedPatterns(Hashtable<Sequence, BitSet[]>, int, int) - Static method in class de.jstacs.motifDiscovery.KMereStatistic
This method returns a list of
Sequence
s.
getContent() - Method in class de.jstacs.parameters.FileParameter.FileRepresentation
Returns the content of the file.
getContext(String[]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method returns a
String
representation of the context.
getCorrectedPosition(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMConstraint
Returns the value of the corrected position index
.
getCost(int, int) - Method in class de.jstacs.algorithms.alignment.Alignment
getCost() - Method in class de.jstacs.algorithms.alignment.StringAlignment
Returns the costs.
getCostFor(Sequence, Sequence, int, int) - Method in class de.jstacs.algorithms.alignment.cost.AffineCosts
getCostFor(Sequence, Sequence, int, int) - Method in interface de.jstacs.algorithms.alignment.cost.Costs
Returns the costs for the alignment of s1(i)
and
s2(j)
.
getCostFor(Sequence, Sequence, int, int) - Method in class de.jstacs.algorithms.alignment.cost.MatrixCosts
getCostFor(Sequence, Sequence, int, int) - Method in class de.jstacs.algorithms.alignment.cost.SimpleCosts
getCount(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
Returns the current count with index index
.
getCounts() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
Returns the current counts for this parameter.
getCounts(DataSet...) - Static method in class de.jstacs.utils.PFMComparator
This method counts the occurrences of symbols in the given data sets.
getCum_Complex(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
getCum_Naive(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
getCurrentAnnotation() - Method in class de.jstacs.data.sequences.annotation.NullSequenceAnnotationParser
getCurrentAnnotation() - Method in interface de.jstacs.data.sequences.annotation.SequenceAnnotationParser
getCurrentAnnotation() - Method in class de.jstacs.data.sequences.annotation.SimpleSequenceAnnotationParser
getCurrentAnnotation() - Method in class de.jstacs.data.sequences.annotation.SplitSequenceAnnotationParser
getCurrentParameterSet() - Method in class de.jstacs.algorithms.optimization.termination.AbstractTerminationCondition
getCurrentParameterSet() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
This method returns the current
ParameterSet
of the classifier.
getCurrentParameterSet() - Method in class de.jstacs.data.AlphabetContainer
getCurrentParameterSet() - Method in class de.jstacs.data.alphabets.Alphabet
getCurrentParameterSet() - Method in class de.jstacs.data.alphabets.ContinuousAlphabet
getCurrentParameterSet() - Method in class de.jstacs.data.alphabets.DiscreteAlphabet
getCurrentParameterSet() - Method in class de.jstacs.data.alphabets.GenericComplementableDiscreteAlphabet
getCurrentParameterSet() - Method in interface de.jstacs.InstantiableFromParameterSet
Returns the
InstanceParameterSet
that has been used to
instantiate the current instance of the implementing class.
getCurrentParameterSet() - Method in class de.jstacs.sampling.AbstractBurnInTest
getCurrentParameterSet() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getCurrentParameterSet() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
getCurrentParameterSet() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
getCurrentParameterValues() - Method in interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.differentiable.logistic.LogisticDiffSS
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.differentiable.MultiDimensionalSequenceWrapperDiffSS
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.differentiable.UniformDiffSS
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.UniformDurationDiffSM
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getCurrentParameterValues() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getCurrentSequenceAnnotations() - Method in class de.jstacs.io.AbstractStringExtractor
getCurrentSequenceAnnotations() - Method in class de.jstacs.io.InfixStringExtractor
getCurrentSequenceAnnotations() - Method in class de.jstacs.io.LimitedStringExtractor
getCurrentSequenceAnnotations() - Method in class de.jstacs.io.SparseStringExtractor
getData() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractOptimizableFunction
getData() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.OneDataSetLogGenDisMixFunction
getData() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.OptimizableFunction
getDataRef() - Method in class de.jstacs.tools.DataColumnParameter
Returns the ID of the referenced parameter (tabular) in Galaxy.
getDataSet() - Method in class de.jstacs.data.DataSet.WeightedDataSetFactory
getDataSet(AlphabetContainer, String, SequenceAnnotationParser) - Static method in class de.jstacs.data.sequences.ArbitraryFloatSequence
getDataSet(AlphabetContainer, String) - Static method in class de.jstacs.data.sequences.ArbitraryFloatSequence
getDataSet(AlphabetContainer, AbstractStringExtractor...) - Static method in class de.jstacs.data.sequences.ArbitraryFloatSequence
getDataSet(AlphabetContainer, String, SequenceAnnotationParser) - Static method in class de.jstacs.data.sequences.SparseSequence
getDataSet(AlphabetContainer, String) - Static method in class de.jstacs.data.sequences.SparseSequence
getDataSet(AlphabetContainer, AbstractStringExtractor...) - Static method in class de.jstacs.data.sequences.SparseSequence
getDataSetForProperty(DataSet, DinucleotideProperty) - Static method in enum de.jstacs.data.DinucleotideProperty
getDataSetForProperty(DataSet, DinucleotideProperty.Smoothing, boolean, DinucleotideProperty) - Static method in enum de.jstacs.data.DinucleotideProperty
getDataSetForProperty(DataSet, DinucleotideProperty...) - Static method in enum de.jstacs.data.DinucleotideProperty
getDataSetForProperty(DataSet, DinucleotideProperty.Smoothing, boolean, DinucleotideProperty...) - Static method in enum de.jstacs.data.DinucleotideProperty
getDataSplitMethod() - Method in class de.jstacs.classifiers.assessment.KFoldCrossValidationAssessParameterSet
Returns the
DataSet.PartitionMethod
defining how the mutually exclusive
random-splits of user supplied data are generated.
getDataSplitMethod() - Method in class de.jstacs.classifiers.assessment.RepeatedHoldOutAssessParameterSet
Returns the
DataSet.PartitionMethod
defining how the mutually exclusive
random-splits of user supplied data are generated.
getDataSplitMethod() - Method in class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutAssessParameterSet
Returns the
DataSet.PartitionMethod
defining how the mutually exclusive
random-splits of user supplied data are generated.
getDatatype() - Method in class de.jstacs.AnnotatedEntity
getDeclaredClass() - Method in class de.jstacs.tools.JstacsTool.ResultEntry
Returns the class declared for the default result.
getDefault() - Method in class de.jstacs.parameters.SelectionParameter
Returns the index of the default selected value.
getDefaultExtension(Class<? extends Result>) - Static method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor
Returns the default extension (Galaxy format) for a given result class.
getDefaultResultInfos() - Method in interface de.jstacs.tools.JstacsTool
getDeleteCosts() - Method in class de.jstacs.algorithms.alignment.cost.AffineCosts
getDeleteCosts() - Method in interface de.jstacs.algorithms.alignment.cost.Costs
Returns the costs for a delete gap, i.e., a gap in the second string.
getDeleteCosts() - Method in class de.jstacs.algorithms.alignment.cost.MatrixCosts
getDeleteCosts() - Method in class de.jstacs.algorithms.alignment.cost.SimpleCosts
getDeleteCostsFor(int) - Method in class de.jstacs.algorithms.alignment.cost.AffineCosts
Returns the costs for a delete gap of length length
.
getDeleteOnExit() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
Returns true
if the temporary parameter files shall
be deleted on exit of the program.
getDelim() - Method in class de.jstacs.data.AlphabetContainer
Returns the delimiter that should be used (for writing e.g.
getDepth() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
Returns the depth of the tree, i.e.
getDescendant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method returns the index of the descendant transition element when following the child with index index
getDescription() - Method in class de.jstacs.io.RegExFilenameFilter
getDescription(AlphabetContainer, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
Returns the decoded symbol for the encoded symbol i
.
getDescription() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
Returns a short description of the model that was given by the user in
the parameter set.
getDescription(AlphabetContainer, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM.HomCondProb
getDescription(AlphabetContainer, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhCondProb
getDescription(AlphabetContainer, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhConstraint
getDescription() - Method in interface de.jstacs.tools.JstacsTool
Returns a short description (half a sentence) on what this tool does.
getDifferentiableSequenceScore(int) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
getDifferentiableSequenceScores() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
getDifferentiableStatisticalModels() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
getDimension() - Method in enum de.jstacs.data.DinucleotideProperty
Returns the dimension of this property, e.g.
getDimension() - Method in class de.jstacs.utils.random.DiMRGParams
Returns the dimension of the hyperparameter vector of the underlying
Dirichlet distribution and therefore the dimension of the generated
random array.
getDimension() - Method in class de.jstacs.utils.random.DirichletMRGParams
getDimension() - Method in class de.jstacs.utils.random.ErlangMRGParams
Returns the dimension of the hyperparameter vector of the underlying
Erlang distribution.
getDimension() - Method in class de.jstacs.utils.random.FastDirichletMRGParams
getDimensionOfScope() - Method in interface de.jstacs.algorithms.optimization.Function
Returns the dimension of the scope of the
Function
.
getDimensionOfScope() - Method in class de.jstacs.algorithms.optimization.NegativeDifferentiableFunction
getDimensionOfScope() - Method in class de.jstacs.algorithms.optimization.NegativeFunction
getDimensionOfScope() - Method in class de.jstacs.algorithms.optimization.NumericalDifferentiableFunction
getDimensionOfScope() - Method in class de.jstacs.algorithms.optimization.OneDimensionalFunction
getDimensionOfScope() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.DiffSSBasedOptimizableFunction
getDimensionOfScope() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.CompositeLogPrior
getDimensionOfScope() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.DoesNothingLogPrior
getDimensionOfScope() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateGaussianLogPrior
getDimensionOfScope() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateLaplaceLogPrior
getDimensionOfScope() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SimpleGaussianSumLogPrior
getDimensionOfScope() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMTools.DualFunction
getDinucleotideParameters() - Method in enum de.jstacs.data.DinucleotideProperty
Returns the dinucleotide parameters of this
DinucleotideProperty
as a two-dimensional
double
array, where the rows correspond to the first nucleotide
and the columns correspond to the second nucleotide in the dinucleotide in order A, C, G, and T.
getDistance(T, T) - Method in class de.jstacs.clustering.distances.DistanceMetric
Returns the distance according to the metric of the two supplied objects.
getDistance(double[], double[]) - Method in class de.jstacs.clustering.distances.PearsonCorrelationDistanceMetric
getDistance(double[][], double[][], double[][], int) - Method in class de.jstacs.clustering.distances.SequenceScoreDistance
Returns the distance between the two score profiles.
getDistance(double[][], double[][], StatisticalModel, int) - Method in class de.jstacs.clustering.distances.SequenceScoreDistance
Returns the distance between a score profile and a model.
getDistance(StatisticalModel, StatisticalModel) - Method in class de.jstacs.clustering.distances.SequenceScoreDistance
getDistance() - Method in class de.jstacs.clustering.hierachical.ClusterTree
Returns the distance between the child trees of this cluster tree root node.
getDistance(double[][], ClusterTree<Integer>, ClusterTree<Integer>) - Method in class de.jstacs.clustering.hierachical.Hclust
Returns the distance between the two supplied trees using the linkage method of this
Hclust
object
and the given distance matrix.
getDistance() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
Returns the maximum distance of preceding positions considered in the LSlim model.
getDistance(double[][], double[][], int, int) - Method in class de.jstacs.utils.PFMComparator.NormalizedEuclideanDistance
getDistance(double[][], double[][], int, int) - Method in class de.jstacs.utils.PFMComparator.OneMinusPearsonCorrelationCoefficient
getDistance(double[][], double[][], int) - Method in class de.jstacs.utils.PFMComparator.PFMDistance
This method computes the distance between two PFMs.
getDistance(double[][], double[][], int, int) - Method in class de.jstacs.utils.PFMComparator.PFMDistance
Computes the mean distance between the overlapping parts of pfm1
and pfm2
starting at the offsets
l1
and l2
, respectively.
getDistance(double[][], double[][], int, int) - Method in class de.jstacs.utils.PFMComparator.SymmetricKullbackLeiblerDivergence
getDistance(double[][], double[][], int, int) - Method in class de.jstacs.utils.PFMComparator.UniformBorderWrapper
getDoubleFromParameter(Parameter) - Static method in class de.jstacs.io.ParameterSetParser
Returns the
double
which is the value of the
Parameter
par
.
getEAR(DataSet, DataSet, double[], double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTExplainingAwayResidual
Returns the explaining away residual (EAR) between all pairs of positions
as a matrix.
getEAR(double[][][][][][], double[][][][][][], double, double) - Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Computes the explaining away residual from fgStats
and
bgStats
counted on sequences with a total weight of
nFg
and nBg
, respectively.
getEAR(double[][][][], double[][][][], double, double) - Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Computes the explaining away residual from fgStats
and
bgStats
counted on sequences with a total weight of
nFg
and nBg
, respectively.
getEdgeFromIndex(int, int) - Method in class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
This method decodes an index in an edge.
getElapsedTime() - Method in class de.jstacs.utils.RealTime
getElapsedTime() - Method in class de.jstacs.utils.Time
Returns the elapsed time since invoking the constructor.
getElapsedTime() - Method in class de.jstacs.utils.UserTime
getElement(int) - Method in class de.jstacs.io.StringExtractor
Returns
String
number
idx
that has been extracted.
getElement() - Method in class de.jstacs.utils.ComparableElement
This method returns the element.
getElementAt(int) - Method in class de.jstacs.data.DataSet
This method returns the element, i.e.
getElementAt(int) - Method in class de.jstacs.data.DataSet.WeightedDataSetFactory
getElementLength() - Method in class de.jstacs.classifiers.assessment.ClassifierAssessmentAssessParameterSet
getElementLength() - Method in class de.jstacs.data.DataSet
Returns the length of the elements, i.e.
getElongateDeleteCosts() - Method in class de.jstacs.algorithms.alignment.cost.AffineCosts
Returns the costs for elongating a delete gap by one position.
getElongateInsertCosts() - Method in class de.jstacs.algorithms.alignment.cost.AffineCosts
Returns the costs for elongating an insert gap by one position.
getEmissionIndexes() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
Returns a clone of the internal array of emission indexes that represent which emission is used in which state.
getEmissions() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
Returns a clone of the internal emissions.
getEmptyContainer() - Method in class de.jstacs.data.sequences.ArbitraryFloatSequence
getEmptyContainer() - Method in class de.jstacs.data.sequences.ArbitrarySequence
getEmptyContainer() - Method in class de.jstacs.data.sequences.CyclicSequenceAdaptor
getEmptyContainer() - Method in class de.jstacs.data.sequences.MappedDiscreteSequence
getEmptyContainer() - Method in class de.jstacs.data.sequences.MultiDimensionalArbitrarySequence
getEmptyContainer() - Method in class de.jstacs.data.sequences.MultiDimensionalDiscreteSequence
getEmptyContainer() - Method in class de.jstacs.data.sequences.Sequence
The method returns a container that can be used for accessing the symbols for each position.
getEmptyContainer() - Method in class de.jstacs.data.sequences.Sequence.RecursiveSequence
getEmptyContainer() - Method in class de.jstacs.data.sequences.SimpleDiscreteSequence
getEmptyRepresentation() - Method in class de.jstacs.data.sequences.ArbitraryFloatSequence
getEmptyRepresentation() - Method in class de.jstacs.data.sequences.ArbitrarySequence
getEmptyRepresentation() - Method in class de.jstacs.data.sequences.CyclicSequenceAdaptor
getEmptyRepresentation() - Method in class de.jstacs.data.sequences.MultiDimensionalSequence
getEmptyRepresentation() - Method in class de.jstacs.data.sequences.Sequence
getEmptyRepresentation() - Method in class de.jstacs.data.sequences.Sequence.RecursiveSequence
getEmptyRepresentation() - Method in class de.jstacs.data.sequences.SimpleDiscreteSequence
getEnd() - Method in class de.jstacs.data.sequences.annotation.LocatedSequenceAnnotationWithLength
getEndIndexOfAlignmentForFirst() - Method in class de.jstacs.algorithms.alignment.PairwiseStringAlignment
This method returns the end index of the alignment in the first sequence.
getEndNode() - Method in class de.jstacs.algorithms.graphs.Edge
Returns the end node of the edge.
getEndValue() - Method in class de.jstacs.parameters.RangeParameter
Returns the last value of a range of parameter values or
null
if no range was specified.
getEntropy(Constraint) - Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.ConstraintManager
Tries to compute the entropy as exact as possible.
getErrorMessage() - Method in class de.jstacs.parameters.AbstractSelectionParameter
getErrorMessage() - Method in class de.jstacs.parameters.FileParameter
getErrorMessage() - Method in class de.jstacs.parameters.Parameter
If a value could not be set successfully this method returns the
corresponding error message.
getErrorMessage() - Method in class de.jstacs.parameters.ParameterSet
Returns the message of the last error that occurred.
getErrorMessage() - Method in class de.jstacs.parameters.ParameterSetContainer
getErrorMessage() - Method in class de.jstacs.parameters.RangeParameter
getErrorMessage() - Method in class de.jstacs.parameters.SelectionParameter
getErrorMessage() - Method in class de.jstacs.parameters.SimpleParameter
getErrorMessage() - Method in interface de.jstacs.parameters.validation.Constraint
Returns the message of the last error (missed constraint) or
null
if the constraint was fulfilled by the last checked
value.
getErrorMessage() - Method in class de.jstacs.parameters.validation.ConstraintValidator
getErrorMessage() - Method in class de.jstacs.parameters.validation.NumberValidator
getErrorMessage() - Method in interface de.jstacs.parameters.validation.ParameterValidator
getErrorMessage() - Method in class de.jstacs.parameters.validation.RegExpValidator
getErrorMessage() - Method in class de.jstacs.parameters.validation.SimpleStaticConstraint
getErrorMessage() - Method in class de.jstacs.parameters.validation.StorableValidator
getESS() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getESS() - Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.DifferentiableStatisticalModel
Returns the equivalent sample size (ess) of this model, i.e.
getESS() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getEss() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSMParameterSet
Returns the equivalent samples size (ess) defined in this set of
parameters.
getEss() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTExplainingAwayResidual.BTExplainingAwayResidualParameterSet
Returns the equivalent sample sizes (ess) defined by this set of
parameters.
getEss() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTMutualInformation.BTMutualInformationParameterSet
Returns the equivalent sample sizes (ess) defined by this set of
parameters.
getEss() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMExplainingAwayResidual.PMMExplainingAwayResidualParameterSet
Returns the equivalent sample sizes (ess) defined by this set of
parameters.
getEss() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMMutualInformation.PMMMutualInformationParameterSet
Returns the equivalent sample sizes (ess) defined by this set of parameters.
getESS() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getESS() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getESS() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getESS() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getESS() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
getESS() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getESS() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getESS() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getESS() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
getESS() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getESS() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
getESS() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getESS() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getESS() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
This method returns the ess (equivalent sample size)
that is used in this model.
getEss() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.StructureLearner
getESS() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getExceptionIfMPNotComputable() - Method in class de.jstacs.classifiers.assessment.ClassifierAssessmentAssessParameterSet
getExpLambda(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMConstraint
Returns the exponential value of

at position
index
:

.
getExport() - Method in class de.jstacs.results.ListResult
getExport() - Method in class de.jstacs.results.TextResult
Returns
true
if the contents are saved to a separate file in
Galaxy
.
getExpPartOfProb(MEMConstraint[], int[], SequenceIterator) - Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMTools
This method computes the exponential part of the probability, i.e., everything except the normalization constant.
getExpValue() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
getExtendedType() - Method in class de.jstacs.parameters.FileParameter
Returns the extended type (or
null
if not set) of this
FileParameter
.
getExtendedType() - Method in class de.jstacs.results.TextResult
getExtension() - Method in class de.jstacs.parameters.FileParameter.FileRepresentation
getExtension() - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor.FileResult
Returns the filename extension
getExtremum() - Method in class de.jstacs.algorithms.optimization.QuadraticFunction
getFactorForAucPR() - Method in class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
This method returns a factor that must be multiplied to scores for computing PR curves.
getFactors(String, boolean, ConstraintManager.Decomposition) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEManager
This method returns an array of independent maximum entropy models parsed from the given constraints.
getFactors(ArrayList<int[]>, boolean, ConstraintManager.Decomposition) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEManager
This method returns an array of independent maximum entropy models parsed from the given constraints.
getFancyScatterplot(AbstractScoreBasedClassifier, AbstractScoreBasedClassifier, REnvironment, DataSet...) - Static method in class de.jstacs.classifiers.utils.ClassificationVisualizer
Scatters the classification scores of two binary classifiers for given data.
getFileContents() - Method in class de.jstacs.parameters.FileParameter
Returns the content of the file.
getFileExtensions(DataSetResult) - Method in class de.jstacs.results.savers.DataSetResultSaver
getFileExtensions(ListResult) - Method in class de.jstacs.results.savers.ListResultSaver
getFileExtensions(PlotGeneratorResult) - Method in class de.jstacs.results.savers.PlotGeneratorResultSaver
getFileExtensions(T) - Method in interface de.jstacs.results.savers.ResultSaver
Returns the file extensions (in descending preference) for storing the given
Result
getFileExtensions(ResultSetResult) - Method in class de.jstacs.results.savers.ResultSetResultSaver
getFileExtensions(StorableResult) - Method in class de.jstacs.results.savers.StorableResultSaver
getFileExtensions(TextResult) - Method in class de.jstacs.results.savers.TextResultSaver
getFilename() - Method in class de.jstacs.parameters.FileParameter.FileRepresentation
Returns the filename.
getFilename() - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor.FileResult
Returns the filename.
getFilesize() - Method in class de.jstacs.parameters.FileParameter.FileRepresentation
getFinalStatePosterioriMatrix(double[][]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
getFinishedDate() - Method in class de.jstacs.tools.ToolResult
Returns the date and time, when the tool's run resulting in this
ToolResult
finished.
getFirstElement() - Method in class de.jstacs.utils.Pair
This method returns the first element.
getFirstParent() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
getFloatFromParameter(Parameter) - Static method in class de.jstacs.io.ParameterSetParser
Returns the
float
which is the value of the
Parameter
par
.
getFormat() - Method in class de.jstacs.tools.JstacsTool.ResultEntry
Returns the format of the result.
getForwardProbability() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
This methoth returns the a-priori probability for the forward strand.
getFreeParameters() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
Returns true
if only free parameters shall be used
getFreq(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
Returns the current frequency with index index
.
getFreq(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
This method determines the specific constraint that is fulfilled by the
Sequence
seq
beginning at position
start
.
getFreq(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMConstraint
getFreqInfo(AlphabetContainer, NumberFormat) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
Returns an information about the stored frequencies.
getFunction(DataSet[], double[][]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
getFunction(DataSet[], double[][]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifier
getFunction(DataSet[], double[][]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
Returns the function that should be sampled from.
getFunction(DataSet[], double[][]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
Returns the function that should be optimized.
getFunction() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
This method return the internal function.
getFunction(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
This method returns a specific internal function.
getFunction() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
This method returns the internal function.
getFunction() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.DifferentiableStatisticalModelWrapperTrainSM
getFunctions() - Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
getFunctions() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
This method returns an array of clones of the internal used functions.
getFurtherClassifierInfos() - Method in class de.jstacs.classifiers.AbstractClassifier
This method returns further information of a classifier as a
StringBuffer
.
getFurtherClassifierInfos() - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
getFurtherClassifierInfos() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
getFurtherClassifierInfos() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifier
getFurtherClassifierInfos() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
getFurtherClassifierInfos() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
getFurtherClassifierInfos() - Method in class de.jstacs.classifiers.MappingClassifier
getFurtherClassifierInfos() - Method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
getFurtherClassifierInfos() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureClassifier
getFurtherInformation() - Method in class de.jstacs.sampling.AbstractBurnInTest
getFurtherInformation() - Method in class de.jstacs.sampling.VarianceRatioBurnInTest
getFurtherInformation() - Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
This method is used to append further information of the instance to the
XML representation.
getFurtherInformation() - Method in class de.jstacs.sequenceScores.differentiable.UniformDiffSS
This method is used to append further information of the instance to the
XML representation.
getFurtherInformation() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getFurtherInformation() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
This method is used to append further information of the instance to the
XML representation.
getFurtherInformation() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getFurtherInformation() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
getFurtherInformation() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getFurtherInformation() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method is used in the subclasses to append further information to
the XML representation.
getFurtherInformation() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.HiddenMotifMixture
getFurtherModelInfos() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
getFurtherModelInfos() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousMM
getFurtherModelInfos() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM
getFurtherModelInfos() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGModelForGibbsSampling
getFurtherModelInfos() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEManager
getGapCostsFor(int) - Method in class de.jstacs.algorithms.alignment.cost.AffineCosts
Returns the costs for a gap of length length
.
getGeneralizedDivergence(double[][], double[][], double) - Static method in class de.jstacs.utils.StatisticalTest
Computes the generalized divergence for two given stochastic matrices
over the same domain, i.e.
getGeneralizedDivergence(double[][], double[], double[], double) - Static method in class de.jstacs.utils.StatisticalTest
Computes the generalized divergence for two stochastic matrices over the
same domain, i.e.
getGeneralizedDivergence(double[][], double) - Static method in class de.jstacs.utils.StatisticalTest
Computes the generalized divergence for two stochastic matrices over the
same domain, i.e.
getGlobalIndexOfMotifInComponent(int, int) - Method in interface de.jstacs.motifDiscovery.MotifDiscoverer
Returns the global index of the motif
used in
component
.
getGlobalIndexOfMotifInComponent(int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getGlobalIndexOfMotifInComponent(int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getGlobalIndexOfMotifInComponent(int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getGlobalIndexOfMotifInComponent(int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getGlobalIndexOfMotifInComponent(int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
getGraphics(int, int) - Method in class de.jstacs.utils.graphics.EPSAdaptor
getGraphics(int, int) - Method in class de.jstacs.utils.graphics.GraphicsAdaptor
getGraphics(int, int) - Method in class de.jstacs.utils.graphics.PDFAdaptor
getGraphics(int, int) - Method in class de.jstacs.utils.graphics.RasterizedAdaptor
getGraphics(int, int) - Method in class de.jstacs.utils.graphics.SVGAdaptor
getGraphicsExtension() - Method in class de.jstacs.utils.graphics.EPSAdaptor
getGraphicsExtension() - Method in class de.jstacs.utils.graphics.GraphicsAdaptor
Returns the file extension for the graphics file format of this
GraphicsAdaptor
.
getGraphicsExtension() - Method in class de.jstacs.utils.graphics.PDFAdaptor
getGraphicsExtension() - Method in class de.jstacs.utils.graphics.RasterizedAdaptor
getGraphicsExtension() - Method in class de.jstacs.utils.graphics.SVGAdaptor
getGraphizNetworkRepresentation(NumberFormat, String, boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getGraphizNetworkRepresentation(NumberFormat, String, boolean) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
This method returns a
String
representation of the structure that
can be used in
Graphviz to create an image.
getGraphviz() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
Returns a Graphviz (dot) representation of the Slim model.
getGraphvizEdgeWeight(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method returns the edge weight for plotting the edge with Graphviz.
getGraphvizNodeOptions(double, double, NumberFormat) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleState
getGraphvizNodeOptions(double, double, NumberFormat) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.State
This method returns a
String
representation of the node options that
can be used in
Graphviz to create the node for this state.
getGraphvizRepresentation(NumberFormat) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns a
String
representation of the structure that
can be used in
Graphviz to create an image.
getGraphvizRepresentation(NumberFormat, boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns a
String
representation of the structure that
can be used in
Graphviz to create an image.
getGraphvizRepresentation(NumberFormat, DataSet, double[], boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns a
String
representation of the structure that
can be used in
Graphviz to create an image.
getGraphvizRepresentation(NumberFormat, DataSet, double[], HashMap<String, String>) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns a
String
representation of the structure that
can be used in
Graphviz to create an image.
getHammingDistance(Sequence) - Method in class de.jstacs.data.sequences.Sequence
This method returns the Hamming distance between the current
Sequence
and
seq
.
getHashMap() - Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.HMMFactory
getHeight(int, double[][]) - Static method in class de.jstacs.utils.SeqLogoPlotter
Returns the automatically chosen height for a given width and position weight matrix.
getHeightForDependencyLogo(int, int, int[], int, int) - Static method in class de.jstacs.utils.SeqLogoPlotter
Returns the height for a dependency logos of the given sequence length and chunks.
getHelpText() - Method in interface de.jstacs.tools.JstacsTool
Returns a detailed help text for this tool, describing the purpose of the tool, all parameters and results.
getHowCreated() - Method in enum de.jstacs.data.DinucleotideProperty
Returns how this property has been determined.
getHtmlFilesPath() - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor
Returns the path where files, e.g.
getHtmlId() - Static method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor
Gets a unique id that can be used, e.g.
getHyperparameter(int) - Method in class de.jstacs.utils.random.DiMRGParams
Returns the value at position i
of the hyperparameter vector
of the underlying Dirichlet distribution.
getHyperparameter(int) - Method in class de.jstacs.utils.random.DirichletMRGParams
getHyperparameter(int) - Method in class de.jstacs.utils.random.ErlangMRGParams
Returns the value at position i
of the hyperparameter vector
of the underlying Erlang distribution.
getHyperparameter(int) - Method in class de.jstacs.utils.random.FastDirichletMRGParams
getHyperparameterForHiddenParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
This method returns the hyperparameter for the hidden parameter with
index index
.
getHyperparameterForHiddenParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getHyperparameterForHiddenParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getHyperparameterForHiddenParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
getHyperParams(int, int, double, double[], double[][][]) - Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
This method returns the hyper-parameters for a model given some a-priori probabilities.
getHyperParams(double, int, int) - Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
Returns the hyper-parameters for all parameters and a given ess.
getICScale(double[]) - Static method in class de.jstacs.utils.SeqLogoPlotter
Returns the information content scaled to [0,1].
getId() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloNode
This method returns the ID of the current PhyloNode
getIdentifier() - Method in class de.jstacs.data.sequences.annotation.SequenceAnnotation
getImage(double[][], REnvironment) - Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.TwoPointEvaluater
This method can be used to create an image of a mutual information
matrix.
getImage(DataSet, double[], REnvironment, double, int...) - Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.TwoPointEvaluater
getImage() - Method in class de.jstacs.utils.graphics.RasterizedAdaptor
getImmutableInstance() - Static method in class de.jstacs.utils.NullProgressUpdater
getIndex(double[], double) - Static method in class de.jstacs.classifiers.utils.PValueComputation
This method searches in sortedScores
for the index
i
so that
sortedScores[i-1] < myScore <= sortedScores[i]
.
getIndex(double[], double, int) - Static method in class de.jstacs.classifiers.utils.PValueComputation
This method searches in sortedScores
beginning at
start
for the index i
so that
sortedScores[i-1] < myScore <= sortedScores[i]
.
getIndex(int) - Method in class de.jstacs.data.sequences.PermutedSequence
getIndex(int) - Method in class de.jstacs.data.sequences.Sequence.CompositeSequence
getIndex(int) - Method in class de.jstacs.data.sequences.Sequence.RecursiveSequence
Returns the index in the internal sequence.
getIndex(int) - Method in class de.jstacs.data.sequences.Sequence.SubSequence
getIndex(String[], Object[], Comparable, boolean) - Static method in class de.jstacs.parameters.ParameterSet
This method tries to find the correct name (
String
) for your
choice.
getIndex() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
Returns the index of this parameter as defined in the constructor.
getIndex(int[]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.CombinationIterator
This method returns an index for the sorted entries of a combination
combi
.
getIndex(int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
Returns the index for position seqPos
in sequence seq
.
getIndex(int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.DistanceBasedScaledTransitionElement
Returns the distance integrated into the transition from pos - 1
to pos
in sequences seq
.
getIndex(int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ScaledTransitionElement
Returns the index of the transition matrix used for the transition from pos - 1
to pos
in sequences seq
.
getIndexForAlphabets() - Method in class de.jstacs.data.AlphabetContainer
This method returns an object that is used for assigning the positions of the
Sequence
s to specific
Alphabet
s.
getIndexOfMaximalComponentFor(Sequence) - Method in interface de.jstacs.motifDiscovery.MotifDiscoverer
Returns the index of the component with the maximal score for the
sequence sequence
.
getIndexOfMaximalComponentFor(Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getIndexOfMaximalComponentFor(Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getIndexOfMaximalComponentFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
Returns the index of the component that has the greatest impact on the
complete score for a
Sequence
.
getIndexOfMaximalComponentFor(Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getIndexOfMaximalComponentFor(Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getIndexOfMaximalComponentFor(Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Returns the index i
of the component with
P(i|s)
maximal.
getIndexTree() - Method in class de.jstacs.clustering.hierachical.ClusterTree
Returns a cluster tree with identical structure as this cluster tree but with all leaves replaced by
integer leaves holding the corresponding original indices.
getIndices() - Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
getIndices(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
This array is used to compute the relative indices of a parameter index.
getInfixDataSet(int, int) - Method in class de.jstacs.data.DataSet
This method enables you to use only an infix of all elements, i.e.
getInfixFilter(int, double, int...) - Method in interface de.jstacs.sequenceScores.QuickScanningSequenceScore
Computes arrays that indicate, for a given set of starting positions and a given k-mer length, if a sequence
containing this k-mer may yield a score above threshold
, choosing the best-scoring option among
all non-specified positions (i.e., those outside the k-mer).
getInfixFilter(int, double, int...) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getInfixFilter(int, double, int...) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
getInfixScores(int, int, int, int, int[], double[][], double[][]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
getInfos() - Method in class de.jstacs.results.MeanResultSet
getInitialClassParam(double) - Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getInitialClassParam(double) - Method in interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore
Returns the initial class parameter for the class this
DifferentiableSequenceScore
is responsible for, based on the class
probability
classProb
.
getInitialClassParam(double) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
getInitialClassParam(double) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getInsertCosts() - Method in class de.jstacs.algorithms.alignment.cost.AffineCosts
getInsertCosts() - Method in interface de.jstacs.algorithms.alignment.cost.Costs
Returns the costs for an insert gap, i.e., a gap in the first string.
getInsertCosts() - Method in class de.jstacs.algorithms.alignment.cost.MatrixCosts
getInsertCosts() - Method in class de.jstacs.algorithms.alignment.cost.SimpleCosts
getInsertCostsFor(int) - Method in class de.jstacs.algorithms.alignment.cost.AffineCosts
Returns the costs for an insert gap of length length
.
getInstance(SequenceAnnotation[], Sequence...) - Method in class de.jstacs.data.sequences.MultiDimensionalArbitrarySequence
getInstance(SequenceAnnotation[], Sequence...) - Method in class de.jstacs.data.sequences.MultiDimensionalDiscreteSequence
getInstance(SequenceAnnotation[], Sequence...) - Method in class de.jstacs.data.sequences.MultiDimensionalSequence
getInstance() - Method in class de.jstacs.parameters.InstanceParameterSet
getInstanceClass() - Method in class de.jstacs.parameters.InstanceParameterSet
Returns the class of the instances that can be constructed using this
set.
getInstanceComment() - Method in class de.jstacs.algorithms.optimization.termination.AbsoluteValueCondition.AbsoluteValueConditionParameterSet
Deprecated.
getInstanceComment() - Method in class de.jstacs.algorithms.optimization.termination.CombinedCondition.CombinedConditionParameterSet
getInstanceComment() - Method in class de.jstacs.algorithms.optimization.termination.IterationCondition.IterationConditionParameterSet
getInstanceComment() - Method in class de.jstacs.algorithms.optimization.termination.MultipleIterationsCondition.MultipleIterationsConditionParameterSet
getInstanceComment() - Method in class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet
getInstanceComment() - Method in class de.jstacs.algorithms.optimization.termination.SmallGradientConditon.SmallGradientConditonParameterSet
getInstanceComment() - Method in class de.jstacs.algorithms.optimization.termination.SmallStepCondition.SmallStepConditionParameterSet
getInstanceComment() - Method in class de.jstacs.algorithms.optimization.termination.TimeCondition.TimeConditionParameterSet
getInstanceComment() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifierParameterSet
getInstanceComment() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifierParameterSet
getInstanceComment() - Method in class de.jstacs.data.AlphabetContainerParameterSet.AlphabetArrayParameterSet
getInstanceComment() - Method in class de.jstacs.data.AlphabetContainerParameterSet
getInstanceComment() - Method in class de.jstacs.data.AlphabetContainerParameterSet.SectionDefinedAlphabetParameterSet
getInstanceComment() - Method in class de.jstacs.data.alphabets.ContinuousAlphabet.ContinuousAlphabetParameterSet
getInstanceComment() - Method in class de.jstacs.data.alphabets.DiscreteAlphabet.DiscreteAlphabetParameterSet
getInstanceComment() - Method in class de.jstacs.data.alphabets.DNAAlphabet.DNAAlphabetParameterSet
getInstanceComment() - Method in class de.jstacs.data.alphabets.DNAAlphabetContainer.DNAAlphabetContainerParameterSet
getInstanceComment() - Method in class de.jstacs.data.alphabets.IUPACDNAAlphabet.IUPACDNAAlphabetParameterSet
getInstanceComment() - Method in class de.jstacs.data.alphabets.ProteinAlphabet.ProteinAlphabetParameterSet
getInstanceComment() - Method in class de.jstacs.parameters.InstanceParameterSet
Returns a comment (a textual description) of the class that can be
constructed using this
ParameterSet
.
getInstanceComment() - Method in class de.jstacs.sampling.VarianceRatioBurnInTestParameterSet
getInstanceComment() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSMParameterSet
getInstanceComment() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTExplainingAwayResidual.BTExplainingAwayResidualParameterSet
getInstanceComment() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTMutualInformation.BTMutualInformationParameterSet
getInstanceComment() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.InhomogeneousMarkov.InhomogeneousMarkovParameterSet
getInstanceComment() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMExplainingAwayResidual.PMMExplainingAwayResidualParameterSet
getInstanceComment() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMMutualInformation.PMMMutualInformationParameterSet
getInstanceComment() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.parameters.HomMMParameterSet
getInstanceComment() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters.BayesianNetworkTrainSMParameterSet
getInstanceComment() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters.FSDAGTrainSMParameterSet
getInstanceComment() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters.FSMEMParameterSet
getInstanceFromParameterSet(InstanceParameterSet<T>) - Static method in class de.jstacs.io.ParameterSetParser
getInstanceFromParameterSet(ParameterSet, Class<T>) - Static method in class de.jstacs.io.ParameterSetParser
getInstanceName() - Method in class de.jstacs.algorithms.optimization.termination.AbsoluteValueCondition.AbsoluteValueConditionParameterSet
Deprecated.
getInstanceName() - Method in class de.jstacs.algorithms.optimization.termination.CombinedCondition.CombinedConditionParameterSet
getInstanceName() - Method in class de.jstacs.algorithms.optimization.termination.IterationCondition.IterationConditionParameterSet
getInstanceName() - Method in class de.jstacs.algorithms.optimization.termination.MultipleIterationsCondition.MultipleIterationsConditionParameterSet
getInstanceName() - Method in class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet
getInstanceName() - Method in class de.jstacs.algorithms.optimization.termination.SmallGradientConditon.SmallGradientConditonParameterSet
getInstanceName() - Method in class de.jstacs.algorithms.optimization.termination.SmallStepCondition.SmallStepConditionParameterSet
getInstanceName() - Method in class de.jstacs.algorithms.optimization.termination.TimeCondition.TimeConditionParameterSet
getInstanceName() - Method in class de.jstacs.classifiers.AbstractClassifier
Returns a short description of the classifier.
getInstanceName() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
getInstanceName() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.CompositeLogPrior
getInstanceName() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.DoesNothingLogPrior
getInstanceName() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.LogPrior
Returns a short instance name.
getInstanceName() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateGaussianLogPrior
getInstanceName() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateLaplaceLogPrior
getInstanceName() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SimpleGaussianSumLogPrior
getInstanceName() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.msp.MSPClassifier
getInstanceName() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifierParameterSet
getInstanceName() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
getInstanceName() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
getInstanceName() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifierParameterSet
getInstanceName() - Method in class de.jstacs.classifiers.MappingClassifier
getInstanceName() - Method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
getInstanceName() - Method in class de.jstacs.data.AlphabetContainerParameterSet.AlphabetArrayParameterSet
getInstanceName() - Method in class de.jstacs.data.AlphabetContainerParameterSet
getInstanceName() - Method in class de.jstacs.data.AlphabetContainerParameterSet.SectionDefinedAlphabetParameterSet
getInstanceName() - Method in class de.jstacs.data.alphabets.Alphabet.AlphabetParameterSet
getInstanceName() - Method in class de.jstacs.data.alphabets.DNAAlphabetContainer.DNAAlphabetContainerParameterSet
getInstanceName() - Method in class de.jstacs.parameters.InstanceParameterSet
Returns the name of an instance of the class that can be constructed
using this
ParameterSet
.
getInstanceName() - Method in interface de.jstacs.sampling.BurnInTest
Returns a short description of the burn-in test.
getInstanceName() - Method in class de.jstacs.sampling.SimpleBurnInTest
Deprecated.
getInstanceName() - Method in class de.jstacs.sampling.VarianceRatioBurnInTest
getInstanceName() - Method in class de.jstacs.sampling.VarianceRatioBurnInTestParameterSet
getInstanceName() - Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
getInstanceName() - Method in class de.jstacs.sequenceScores.differentiable.logistic.LogisticDiffSS
getInstanceName() - Method in class de.jstacs.sequenceScores.differentiable.MultiDimensionalSequenceWrapperDiffSS
getInstanceName() - Method in class de.jstacs.sequenceScores.differentiable.UniformDiffSS
getInstanceName() - Method in interface de.jstacs.sequenceScores.SequenceScore
Should return a short instance name such as iMM(0), BN(2), ...
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSMParameterSet
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTExplainingAwayResidual.BTExplainingAwayResidualParameterSet
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTExplainingAwayResidual
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTMutualInformation.BTMutualInformationParameterSet
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTMutualInformation
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.InhomogeneousMarkov
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.InhomogeneousMarkov.InhomogeneousMarkovParameterSet
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Returns the name of the
Measure
and possibly some additional
information about the current instance.
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMExplainingAwayResidual
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMExplainingAwayResidual.PMMExplainingAwayResidualParameterSet
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMMutualInformation
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMMutualInformation.PMMMutualInformationParameterSet
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.UniformDurationDiffSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.DifferentiableStatisticalModelWrapperTrainSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DGTrainSMParameterSet
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousMM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.BayesianNetworkTrainSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGTrainSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSMEManager
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureClassifier
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingPhyloHMM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.HiddenMotifMixture
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.GaussianLikePositionPrior
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.PositionPrior
Returns the instance name.
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.UniformPositionPrior
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.PFMWrapperTrainSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.UniformTrainSM
getInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.VariableLengthWrapperTrainSM
getInstanceParameterSets() - Method in enum de.jstacs.data.AlphabetContainer.AlphabetContainerType
getInstanceParameterSets(Class<T>, String) - Static method in class de.jstacs.utils.SubclassFinder
getInternalCosts() - Method in class de.jstacs.algorithms.alignment.cost.AffineCosts
getInternalPosition(int[]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
Copies the current value of the internal iterator in the given array.
getIntFromParameter(Parameter) - Static method in class de.jstacs.io.ParameterSetParser
Returns the
int
which is the value of the
Parameter
par
.
getIterations() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
Returns the number of independent re-starts in the training.
getK() - Method in class de.jstacs.classifiers.assessment.KFoldCrossValidationAssessParameterSet
getKLDivergence(double[][][]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
Returns the KL-divergence of the distribution of this
BNDiffSMParameterTree
and the distribution given by
ds
.
getKLDivergence(double[], double[][][][]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
Returns the KL-divergence of the distribution of this
BNDiffSMParameterTree
and a number of distribution given by
ds
and weighted by
weight
getKLDivergence(StatisticalModel, StatisticalModel, int) - Static method in class de.jstacs.utils.StatisticalModelTester
Returns the Kullback-Leibler-divergence D(p_m1||p_m2)
.
getKmereSequenceStatistic(int, boolean, int, DataSet...) - Static method in class de.jstacs.motifDiscovery.KMereStatistic
This method enables the user to get a statistic over all k
-mers
in the sequences.
getKmereSequenceStatistic(boolean, int, HashSet<Sequence>, DataSet...) - Static method in class de.jstacs.motifDiscovery.KMereStatistic
This method enables the user to get a statistic for a set of k
-mers.
getLabel(String[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method returns a label for the state.
getLambda(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMConstraint
Returns the value of

.
getLastContextState() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
Returns the last state of the context
getLastContextState(int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getLastContextState(int, int) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
The method returns the index of the state of the context, if there is no context -1 is returned.
getLastScore() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
Returns the score that was computed in the last optimization of the
parameters.
getLeaves() - Method in class de.jstacs.clustering.hierachical.ClusterTree
Returns all leaves of this cluster tree as
ClusterTree
objects comprising just the corresponding
leaf element
getLegalName(String) - Static method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor
Returns a legal variable name in Galaxy
getLength() - Method in class de.jstacs.algorithms.alignment.StringAlignment
This method return the length of the alignment.
getLength() - Method in class de.jstacs.classifiers.AbstractClassifier
Returns the length of the sequences this classifier can handle or
0
for sequences of arbitrary length.
getLength() - Method in class de.jstacs.data.sequences.annotation.LocatedSequenceAnnotationWithLength
getLength() - Method in class de.jstacs.data.sequences.ArbitraryFloatSequence
getLength() - Method in class de.jstacs.data.sequences.ArbitrarySequence
getLength() - Method in class de.jstacs.data.sequences.ByteSequence
getLength() - Method in class de.jstacs.data.sequences.CyclicSequenceAdaptor
getLength() - Method in class de.jstacs.data.sequences.IntSequence
getLength() - Method in class de.jstacs.data.sequences.MappedDiscreteSequence
getLength() - Method in class de.jstacs.data.sequences.MultiDimensionalSequence
getLength() - Method in class de.jstacs.data.sequences.PermutedSequence
getLength() - Method in class de.jstacs.data.sequences.Sequence.CompositeSequence
getLength() - Method in class de.jstacs.data.sequences.Sequence
getLength() - Method in class de.jstacs.data.sequences.Sequence.SubSequence
getLength() - Method in class de.jstacs.data.sequences.ShortSequence
getLength() - Method in class de.jstacs.data.sequences.SparseSequence
getLength() - Method in class de.jstacs.parameters.SequenceScoringParameterSet
Returns the length of the sequences the model can work on.
getLength() - Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getLength() - Method in interface de.jstacs.sequenceScores.SequenceScore
Returns the length of sequences this instance can score.
getLength() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getLength() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.GaussianLikePositionPrior
getLength() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.PositionPrior
Returns the length that is supported by this prior.
getLength() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.UniformPositionPrior
getLengthArray(DifferentiableSequenceScore...) - Static method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
getLengthOfBurnIn() - Method in class de.jstacs.sampling.AbstractBurnInTest
getLengthOfBurnIn() - Method in interface de.jstacs.sampling.BurnInTest
getLengthOfBurnIn() - Method in class de.jstacs.sampling.SimpleBurnInTest
Deprecated.
getLengthOfModels() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
getLine(int) - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier.DoubleTableResult
Return the line with a given index
from the table.
getLineEps() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.NumericalHMMTrainingParameterSet
This method returns the threshold that should be used for stopping the line search during the optimization.
getLink() - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor.LinkedImageResult
Returns the linked file
getList() - Method in class de.jstacs.parameters.RangeParameter
Returns a list of all parameter values as a
String
or
null
if no parameter values have been set.
getLnFreq(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM.HomCondProb
Returns the logarithmic frequency at a given position
index
.
getLnFreq(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhCondProb
Returns the logarithm of the relative frequency (=probability) at
position index
in the distribution.
getLnFreq(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhCondProb
Returns the logarithm of the relative frequency (=probability) with the
position in the distribution given by the index of the specific
constraint that is fulfilled by the
Sequence
s
beginning at
start
.
getLocalScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
getLog() - Method in class de.jstacs.tools.ui.cli.CLI.SysProtocol
Returns the
StringBuffer
containing all messages since the creation of this
object.
getLogCDF(double) - Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.CDFOfNormal
This method computes the logarithm of the cumulative density function of a standard normal distribution.
getLogGammaScoreForCurrentStatistic() - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SamplingState
This method calculates a score for the current statistics, which is independent from the current parameters
In general the gamma-score is a product of gamma-functions parameterized with the current statistics
getLogGammaScoreForCurrentStatistic() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleSamplingState
getLogGammaScoreFromStatistic() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getLogGammaScoreFromStatistic() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.PhyloDiscreteEmission
getLogGammaScoreFromStatistic() - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SamplingEmission
This method calculates a score for the current statistics, which is independent from the current parameters
In general the gamma-score is a product of gamma-functions parameterized with the current statistics
getLogGammaScoreFromStatistic() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getLogGammaScoreFromStatistic() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method calculates a score for the current statistics, which is independent from the current parameters
In general the gamma-score is a product of gamma-functions parameterized with the current statistics
getLogGammaScoreFromStatistic() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getLogGammaScoreFromStatistic() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ReferenceBasedTransitionElement
getLogGammaScoreFromStatistic() - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.TransitionWithSufficientStatistic
This method calculates a score for the current statistics, which is independent from the current parameters
In general the gamma-score is a product of gamma-functions parameterized with the current statistics
getLogGammaSum(Constraint, double) - Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.ConstraintManager
Computes the sum of differences of the logarithmic values of the prior knowledge and all counts.
getLogLikelihood(StatisticalModel, DataSet) - Static method in class de.jstacs.utils.StatisticalModelTester
Returns the log-likelihood of a
DataSet
data
for a
given model
m
.
getLogLikelihood(StatisticalModel, DataSet, double[]) - Static method in class de.jstacs.utils.StatisticalModelTester
Returns the log-likelihood of a
DataSet
data
for a
given model
m
.
getLogLikelihoodRatio(Sequence) - Method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
getLogNormalizationConstant() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractVariableLengthDiffSM
getLogNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getLogNormalizationConstant() - Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.DifferentiableStatisticalModel
Returns the logarithm of the sum of the scores over all sequences of the event space.
getLogNormalizationConstant() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getLogNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getLogNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getLogNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getLogNormalizationConstant() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getLogNormalizationConstant() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
getLogNormalizationConstant() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getLogNormalizationConstant() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getLogNormalizationConstant() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
getLogNormalizationConstant() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
getLogNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.VariableLengthMixtureDiffSM
getLogNormalizationConstant() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getLogNormalizationConstant() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getLogNormalizationConstant(int) - Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.VariableLengthDiffSM
This method returns the logarithm of the normalization constant for a given sequence
length.
getLogNormalizationConstant() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getLogNormalizationConstantForComponent(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
Computes the logarithm of the normalization constant for the component i
.
getLogNormalizationConstantForComponent(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getLogNormalizationConstantForComponent(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getLogNormalizationConstantForComponent(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
getLogNumberOfPossibleOriginalSequences() - Method in class de.jstacs.data.sequences.MappedDiscreteSequence
This method returns the logarithm of the number of original
Sequence
s that yield the same mapped
Sequence
.
getLogNumberOfPossibleOriginalSequences(int, int) - Method in class de.jstacs.data.sequences.MappedDiscreteSequence
This method returns the logarithm of the number of original
Sequence
s that yield the same mapped
Sequence
.
getLogNumberOfSimilarSymbols(int) - Method in class de.jstacs.data.alphabets.DiscreteAlphabetMapping
This method returns the logarithm of the number of old values that yield the same new value.
getLogPartialNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractVariableLengthDiffSM
getLogPartialNormalizationConstant(int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getLogPartialNormalizationConstant(int) - Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.DifferentiableStatisticalModel
Returns the logarithm of the partial normalization constant for the parameter with index
parameterIndex
.
getLogPartialNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getLogPartialNormalizationConstant(int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getLogPartialNormalizationConstant(int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getLogPartialNormalizationConstant(int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getLogPartialNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getLogPartialNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
getLogPartialNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getLogPartialNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getLogPartialNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getLogPartialNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
getLogPartialNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getLogPartialNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
getLogPartialNormalizationConstant(int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.VariableLengthMixtureDiffSM
getLogPartialNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getLogPartialNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getLogPartialNormalizationConstant(int, int) - Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.VariableLengthDiffSM
This method returns the logarithm of the partial normalization constant for a given
parameter index and a sequence length.
getLogPartialNormalizationConstant(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getLogPartialNormalizer() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
Returns the partial derivative of the normalization constant with respect
to this parameter.
getLogPosteriorFromStatistic() - Method in interface de.jstacs.sampling.SamplingFromStatistic
This method calculates the a-posteriori probability for the current statistics
getLogPosteriorFromStatistic() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
This method calculates the a posteriori probability for the current statistics
getLogPosteriorFromStatistic() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getLogPosteriorFromStatistic() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.PhyloDiscreteEmission
getLogPosteriorFromStatistic() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getLogPosteriorFromStatistic() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleSamplingState
getLogPosteriorFromStatistic() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.TransitionElement
This method computes the log posterior from the internal sufficient statistic.
getLogPosteriorFromStatistic() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
getLogPriorForPositions(int, int...) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.GaussianLikePositionPrior
Returns only the important part and leaving the logarithm of the
normalization constant out.
getLogPriorForPositions(int, int...) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.PositionPrior
The logarithmic value of the prior for specified start positions of the
part motifs.
getLogPriorForPositions(int, int...) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.UniformPositionPrior
getLogPriorPart(double) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEM
This method compute the prior for the current parameter ignoring some constants.
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getLogPriorTerm() - Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.DifferentiableStatisticalModel
This method computes a value that is proportional to
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.MarkovModelDiffSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.UniformDurationDiffSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getLogPriorTerm() - Method in interface de.jstacs.sequenceScores.statisticalModels.StatisticalModel
Returns a value that is proportional to the log of the prior.
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.DifferentiableStatisticalModelWrapperTrainSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousMM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.BayesianNetworkTrainSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEManager
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.MultivariateGaussianEmission
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getLogPriorTerm() - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.Emission
Returns a value that is proportional to the log of the prior.
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.MixtureEmission
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
Returns a value that is proportional to the log of the prior.
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ReferenceBasedTransitionElement
getLogPriorTerm() - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
Returns a value that is proportional to the log of the prior.
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.PFMWrapperTrainSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.UniformTrainSM
getLogPriorTerm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.VariableLengthWrapperTrainSM
getLogPriorTermForComponentProbs() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method computes the part of the prior that comes from the component
probabilities.
getLogProbAndPartialDerivationFor(boolean, int, int, IntList, DoubleList, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
getLogProbAndPartialDerivationFor(boolean, int, int, IntList, DoubleList, Sequence) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.DifferentiableEmission
Returns the logarithmic score for a
Sequence
beginning at
position
start
in the
Sequence
and fills lists with
the indices and the partial derivations.
getLogProbAndPartialDerivationFor(boolean, int, int, IntList, DoubleList, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getLogProbAndPartialDerivationFor(boolean, int, int, IntList, DoubleList, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.PhyloDiscreteEmission
getLogProbAndPartialDerivationFor(boolean, int, int, IntList, DoubleList, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getLogProbAndPartialDerivationFor(boolean, int, int, IntList, DoubleList, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
getLogProbFor(Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
getLogProbFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
getLogProbFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
getLogProbFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getLogProbFor(Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getLogProbFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getLogProbFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getLogProbFor(Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getLogProbFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getLogProbFor(Sequence, int, int) - Method in interface de.jstacs.sequenceScores.statisticalModels.StatisticalModel
Returns the logarithm of the probability of (a part of) the given
sequence given the model.
getLogProbFor(Sequence, int) - Method in interface de.jstacs.sequenceScores.statisticalModels.StatisticalModel
Returns the logarithm of the probability of (a part of) the given
sequence given the model.
getLogProbFor(Sequence) - Method in interface de.jstacs.sequenceScores.statisticalModels.StatisticalModel
Returns the logarithm of the probability of the given sequence given the
model.
getLogProbFor(Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getLogProbFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getLogProbFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
getLogProbFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.DifferentiableStatisticalModelWrapperTrainSM
getLogProbFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM
getLogProbFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM
getLogProbFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEManager
getLogProbFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
getLogProbFor(boolean, int, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
getLogProbFor(boolean, int, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.MultivariateGaussianEmission
getLogProbFor(boolean, int, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getLogProbFor(boolean, int, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.PhyloDiscreteEmission
getLogProbFor(boolean, int, int, Sequence) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.Emission
This method computes the logarithm of the likelihood.
getLogProbFor(boolean, int, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.MixtureEmission
getLogProbFor(boolean, int, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getLogProbFor(boolean, int, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
getLogProbFor(int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Returns the logarithmic probability for the sequence and the given
component.
getLogProbFor(int, Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Returns the logarithmic probability for the sequence between start and end and the given
component.
getLogProbFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
getLogProbFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.PFMWrapperTrainSM
getLogProbFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.UniformTrainSM
getLogProbFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.VariableLengthWrapperTrainSM
getLogProbForPath(IntList, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
getLogProbForPath(IntList, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getLogProbForPath(IntList, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
getLogProbUsingCurrentParameterSetFor(int, Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Returns the logarithmic probability for the sequence and the given
component using the current parameter set.
getLogProbUsingCurrentParameterSetFor(int, Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.MixtureTrainSM
getLogProbUsingCurrentParameterSetFor(int, Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
getLogProbUsingCurrentParameterSetFor(int, Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
getLogProposalPosteriorFromStatistic() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.PhyloDiscreteEmission
Returns the log posterior of the proposal distribution for the current statistic
getLogScore(int...) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
getLogScore(int...) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
This method enables the user to get the log-score without using a sequence object.
getLogScore(int...) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
getLogScore(int...) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.UniformDurationDiffSM
getLogScoreAndPartialDerivation(Sequence, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getLogScoreAndPartialDerivation(Sequence, IntList, DoubleList) - Method in interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore
Returns the logarithmic score for a
Sequence
seq
and
fills lists with the indices and the partial derivations.
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) - Method in interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore
Returns the logarithmic score for a
Sequence
beginning at
position
start
in the
Sequence
and fills lists with
the indices and the partial derivations.
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) - Method in interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore
Returns the logarithmic score for a
Sequence
beginning at
position
start
in the
Sequence
and fills lists with
the indices and the partial derivations.
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.differentiable.logistic.LogisticDiffSS
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.differentiable.MultiDimensionalSequenceWrapperDiffSS
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.differentiable.UniformDiffSS
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractVariableLengthDiffSM
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractVariableLengthDiffSM
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getLogScoreAndPartialDerivation(IntList, DoubleList, int...) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
getLogScoreAndPartialDerivation(IntList, DoubleList, int...) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
This method enables the user to get the log-score and the partial derivations without using a sequence object.
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
getLogScoreAndPartialDerivation(IntList, DoubleList, int...) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
getLogScoreAndPartialDerivation(IntList, DoubleList, int...) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.UniformDurationDiffSM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.VariableLengthMixtureDiffSM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) - Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.VariableLengthDiffSM
getLogScoreAndPartialDerivation(Sequence, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getLogScoreAndPartialDerivation(Sequence, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getLogScoreAndPartialDerivation(Sequence, int, int, IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getLogScoreAndPartialDerivation(int, int, IntList, DoubleList, Sequence) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.DifferentiableState
This method allows to compute the logarithm of the score and the gradient for the given subsequences.
getLogScoreAndPartialDerivation(int, int, IntList, DoubleList, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleDifferentiableState
getLogScoreAndPartialDerivation(int, int, int, IntList, DoubleList, Sequence, int) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.DifferentiableTransition
This method allows to compute the logarithm of the score and the gradient for a specific transition.
getLogScoreAndPartialDerivation(int, IntList, DoubleList, Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.TransitionElement
Returns the logarithmic score and fills lists with
the indices and the partial derivations.
getLogScoreAndPartialDerivation(int, int, int, IntList, DoubleList, Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
getLogScoreAndPartialDerivationForInternal(IntList, DoubleList) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
This method enables the user to get the log-score and the partial derivations without using a sequence object by using the internal iterator.
getLogScoreFor(Sequence) - Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getLogScoreFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getLogScoreFor(DataSet) - Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getLogScoreFor(DataSet, double[]) - Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getLogScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
getLogScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.differentiable.logistic.LogisticDiffSS
getLogScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.differentiable.MultiDimensionalSequenceWrapperDiffSS
getLogScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.differentiable.UniformDiffSS
getLogScoreFor(Sequence) - Method in interface de.jstacs.sequenceScores.SequenceScore
Returns the logarithmic score for the
Sequence
seq
.
getLogScoreFor(Sequence, int) - Method in interface de.jstacs.sequenceScores.SequenceScore
Returns the logarithmic score for the
Sequence
seq
beginning at position
start
in the
Sequence
.
getLogScoreFor(Sequence, int, int) - Method in interface de.jstacs.sequenceScores.SequenceScore
Returns the logarithmic score for the
Sequence
seq
beginning at position
start
in the
Sequence
.
getLogScoreFor(DataSet) - Method in interface de.jstacs.sequenceScores.SequenceScore
This method computes the logarithm of the scores of all sequences
in the given data set.
getLogScoreFor(DataSet, double[]) - Method in interface de.jstacs.sequenceScores.SequenceScore
This method computes and stores the logarithm of the scores for
any sequence in the data set in the given double
-array.
getLogScoreFor(DataSet) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
getLogScoreFor(DataSet, double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
getLogScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractVariableLengthDiffSM
getLogScoreFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractVariableLengthDiffSM
getLogScoreFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getLogScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getLogScoreFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getLogScoreFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getLogScoreFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getLogScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
getLogScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getLogScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getLogScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
getLogScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getLogScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
getLogScoreFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.VariableLengthMixtureDiffSM
getLogScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getLogScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getLogScoreFor(Sequence, int, int) - Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.VariableLengthDiffSM
getLogScoreFor(Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getLogScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getLogScoreFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getLogScoreFor(DataSet) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getLogScoreFor(DataSet, double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getLogScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEM
Returns the logarithmic score for the sequence
beginning at start
.
getLogScoreFor(Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getLogScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getLogScoreFor(Sequence, int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getLogScoreFor(DataSet) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getLogScoreFor(DataSet, double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getLogScoreFor(int, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleState
getLogScoreFor(int, int, Sequence) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.State
This method returns the logarithm of the score for a given sequence with given start and end position.
getLogScoreFor(int, Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method returns the score for the transition from the current context to the state with index index
.
getLogScoreFor(int, int, int, Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getLogScoreFor(int, Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.DistanceBasedScaledTransitionElement
getLogScoreFor(int, Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ScaledTransitionElement
getLogScoreFor(int, int, int, Sequence, int) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
This method returns the logarithm of the score for the transition.
getLogScoreFor(DataSet) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
getLogScoreForInternal() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
This method enables the user to get the log-score without using a sequence object by using the internal iterator.
getLogStatePosteriorMatrixFor(int, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns the log state posterior of all states for a sequence.
getLogStatePosteriorMatrixFor(DataSet) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns the log state posteriors for all sequences of the data set data
.
getLogStatePosteriorMatrixFor(int, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
getLogSum(double...) - Static method in class de.jstacs.utils.Normalisation
Returns the logarithm of the sum of values val[i]
given as
lnVal[i] = Math.log( val[i] )
.
getLogSum(int, int, double...) - Static method in class de.jstacs.utils.Normalisation
Returns the logarithm of the sum of values v[i]
given as
lnVal[i] = Math.log( val[i] )
between a start and end index.
getLogT() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
Returns the part of the normalization constant of parameters before this
parameter in the structure of the network.
getLogZ() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
Returns the part of the normalization constant of parameters after this
parameter in the structure of the network.
getLongFromParameter(Parameter) - Static method in class de.jstacs.io.ParameterSetParser
Returns the
long
which is the value of the
Parameter
par
.
getLowerBound() - Method in class de.jstacs.parameters.validation.NumberValidator
getMarginalDistribution(StatisticalModel, int[]...) - Static method in class de.jstacs.utils.StatisticalModelTester
This method computes the marginal distribution for any discrete model
m
and all sequences that fulfill the constraint
, if possible.
getMarginalOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
Returns the marginal order, i.e.
getMatrixForKruskal(double[][]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Prepares a matrix of pairwise association measures for the implementation of Kruskal's algorithm.
getMax() - Method in class de.jstacs.data.alphabets.ContinuousAlphabet
Returns the maximal value of this alphabet.
getMax() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
Returns the maximal value that can be scored.
getMax(double[][]) - Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.TwoPointEvaluater
This method can be used to determine the maximal value of the matrix of
mutual informations.
getMaximalAlphabetLength() - Method in class de.jstacs.data.AlphabetContainer
getMaximalEdgeFor(byte, int, int...) - Method in class de.jstacs.algorithms.graphs.tensor.AsymmetricTensor
getMaximalEdgeFor(byte, int, int...) - Method in class de.jstacs.algorithms.graphs.tensor.SubTensor
getMaximalEdgeFor(byte, int, int...) - Method in class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
getMaximalEdgeFor(byte, int, int...) - Method in class de.jstacs.algorithms.graphs.tensor.Tensor
Returns the edge
permute(parents[0],...,parents[k-1]) -> child
that maximizes
the score.
getMaximalElementLength() - Method in class de.jstacs.data.DataSet
Returns the maximal length of an element, i.e.
getMaximalInDegree() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getMaximalInDegree() - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
This method returns the maximal out degree of any context used in this transition instance.
getMaximalMarkovOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.AbstractDifferentiableStatisticalModel
getMaximalMarkovOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getMaximalMarkovOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
Returns the maximal Markov order of this tree.
getMaximalMarkovOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousDiffSM
Returns the maximal used markov oder.
getMaximalMarkovOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getMaximalMarkovOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getMaximalMarkovOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getMaximalMarkovOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getMaximalMarkovOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getMaximalMarkovOrder() - Method in interface de.jstacs.sequenceScores.statisticalModels.StatisticalModel
This method returns the maximal used Markov order, if possible.
getMaximalMarkovOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
getMaximalMarkovOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
getMaximalMarkovOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM
getMaximalMarkovOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.BayesianNetworkTrainSM
getMaximalMarkovOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGTrainSM
getMaximalMarkovOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getMaximalMarkovOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getMaximalMarkovOrder() - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
This method returns the maximal used Markov order.
getMaximalMarkovOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.UniformTrainSM
getMaximalNumberOfChildren() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getMaximalNumberOfChildren() - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
This method returns the maximal number of children for any context used in this transition instance.
getMaximalSymbolLength() - Method in class de.jstacs.data.alphabets.DiscreteAlphabet
Returns the length of the longest "symbol" in the alphabet.
getMaximumDistance() - Method in class de.jstacs.clustering.hierachical.ClusterTree
Returns the maximum distance of trees under this root node.
getMaximumScore() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getMaximumScore() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
Returns the maximum score in this tree.
getMaxIndex() - Method in class de.jstacs.utils.DoubleList
Returns the index of the first value that is equal to the maximal value.
getMaxIndex(double[]) - Static method in class de.jstacs.utils.ToolBox
Returns the index with maximal value in a double
array.
getMaxIndex(int, int, double[]) - Static method in class de.jstacs.utils.ToolBox
Returns the index with maximal value in a double
array.
getMaxOfDeviation(StatisticalModel, StatisticalModel, int) - Static method in class de.jstacs.utils.StatisticalModelTester
This method computes the maximum deviation between the probabilities for
all sequences of length
for discrete models m1
and m2
.
getMeanParameters(boolean, int) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
Returns the mean parameters over all samplings of all stationary phases.
getMeasure(double, double, double, double) - Method in class de.jstacs.classifiers.performanceMeasures.MaximumCorrelationCoefficient
getMeasure(double, double, double, double) - Method in class de.jstacs.classifiers.performanceMeasures.MaximumFMeasure
getMeasure(double, double, double, double) - Method in class de.jstacs.classifiers.performanceMeasures.MaximumNumericalTwoClassMeasure
This measure compute the measure for a given confusion matrix
getMeasure() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSMParameterSet
Returns the structure
Measure
defined by this set of parameters.
getMeasureName() - Method in class de.jstacs.classifiers.performanceMeasures.MaximumCorrelationCoefficient
getMeasureName() - Method in class de.jstacs.classifiers.performanceMeasures.MaximumFMeasure
getMeasureName() - Method in class de.jstacs.classifiers.performanceMeasures.MaximumNumericalTwoClassMeasure
This method returns a short name of the measure without any parameters.
getMI(double[][][][][][], double) - Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Computes the mutual information from counts
counted on
sequences with a total weight of n
.
getMI(double[][][][], double) - Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Computes the mutual information from counts
counted on
sequences with a total weight of n
.
getMI(DataSet, double[]) - Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.TwoPointEvaluater
This method computes the pairwise mutual information between
the sequence positions.
getMIInBits(DataSet, double[]) - Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.TwoPointEvaluater
This method computes the pairwise mutual information (in bits) between
the sequence positions.
getMime() - Method in class de.jstacs.results.TextResult
getMin(int) - Method in class de.jstacs.data.AlphabetContainer
Returns the minimal value of the underlying
Alphabet
of position
pos
.
getMin() - Method in class de.jstacs.data.alphabets.Alphabet
Returns the minimal value of the
Alphabet
.
getMin() - Method in class de.jstacs.data.alphabets.ContinuousAlphabet
getMin() - Method in class de.jstacs.data.alphabets.DiscreteAlphabet
getMin() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
Returns the minimal value that can be scored.
getMinimalAlphabetLength() - Method in class de.jstacs.data.AlphabetContainer
getMinimalElementLength() - Method in class de.jstacs.data.DataSet
Returns the minimal length of an element, i.e.
getMinimalHyperparameter() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.TransitionElement
getMinimalSequenceLength() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.HiddenMotifMixture
Returns the minimal length a sequence respectively a data set has to have.
getMinimalSequenceLength() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
getMinimumDistance() - Method in class de.jstacs.clustering.hierachical.ClusterTree
Returns the minimum distance of trees under this root node.
getMinimumOriginalIndex() - Method in class de.jstacs.clustering.hierachical.ClusterTree
Returns the minimum original index in this cluster tree.
getMinIndex() - Method in class de.jstacs.utils.DoubleList
Returns the index of the first value that is equal to the minimal value.
getMinIndex(double[]) - Static method in class de.jstacs.utils.ToolBox
Returns the index with minimum value in a double
array.
getMinIndex(int, int, double[]) - Static method in class de.jstacs.utils.ToolBox
Returns the index with minimum value in a double
array.
getMixtureProbabilities() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
Returns the probabilities of the mixture components.
getModel(int) - Method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
getModel(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Returns a deep copy of the i
-th model.
getModelInstanceName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters.BayesianNetworkTrainSMParameterSet
This method returns a short description of the model.
getModelInstanceName(StructureLearner.ModelType, byte, StructureLearner.LearningType, double) - Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters.IDGTrainSMParameterSet
This method returns a short textual representation of the model instance.
getModels() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
Returns the a deep copy of the models.
getModels() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Returns a deep copy of the models.
getMostProbableSequence(SequenceScore, int) - Static method in class de.jstacs.utils.StatisticalModelTester
Returns one most probable sequence for the discrete model m
.
getMotifDiscoverer() - Method in class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
getMotifLength(int) - Method in interface de.jstacs.motifDiscovery.MotifDiscoverer
This method returns the length of the motif with index motif
.
getMotifLength(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getMotifLength(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getMotifLength(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getMotifLength(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getMotifLength(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
getMRG() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method creates the multivariate random generator that will be used
during initialization.
getMRGParams() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method creates the parameters used in a multivariate random
generator while initialization.
getMultiClassScores(DataSet[]) - Method in class de.jstacs.classifiers.AbstractClassifier
This method returns a multidimensional array with class specific scores.
getMultiClassScores(DataSet[]) - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
getName() - Method in class de.jstacs.AnnotatedEntity
getName() - Method in class de.jstacs.classifiers.performanceMeasures.AbstractPerformanceMeasure
getName() - Method in class de.jstacs.classifiers.performanceMeasures.AucPR
getName() - Method in class de.jstacs.classifiers.performanceMeasures.AucROC
getName() - Method in class de.jstacs.classifiers.performanceMeasures.ClassificationRate
getName() - Method in class de.jstacs.classifiers.performanceMeasures.ConfusionMatrix
getName() - Method in class de.jstacs.classifiers.performanceMeasures.CorrelationCoefficient
getName() - Method in class de.jstacs.classifiers.performanceMeasures.FalsePositiveRateForFixedSensitivity
getName() - Method in class de.jstacs.classifiers.performanceMeasures.MaximumNumericalTwoClassMeasure
getName() - Method in interface de.jstacs.classifiers.performanceMeasures.PerformanceMeasure
The method returns the name of the performance measure.
getName() - Method in class de.jstacs.classifiers.performanceMeasures.PositivePredictiveValueForFixedSensitivity
getName() - Method in class de.jstacs.classifiers.performanceMeasures.PRCurve
getName() - Method in class de.jstacs.classifiers.performanceMeasures.ROCCurve
getName() - Method in class de.jstacs.classifiers.performanceMeasures.SensitivityForFixedSpecificity
getName() - Method in interface de.jstacs.clustering.hierachical.PWMSupplier
Returns a name (e.g., an identifier from a database) for the PWM.
getName(Class<? extends ParameterSet>) - Static method in class de.jstacs.parameters.ParameterSet
Returns a name for the class.
getName(ParameterSet) - Static method in class de.jstacs.parameters.ParameterSet
getName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleState
Returns the name of the state.
getName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.PFMWrapperTrainSM
getName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloNode
This method returns the name of the current instance
getName() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloTree
This method returns the name of the PhyloTree
getName() - Method in class de.jstacs.tools.JstacsTool.ResultEntry
Returns the name of the result.
getNameOfAlgorithm() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Returns the name of the used algorithm.
getNameOfAssessment() - Method in class de.jstacs.classifiers.assessment.ClassifierAssessment
Returns the name of this class.
getNames() - Method in class de.jstacs.AnnotatedEntityList
getNames() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
Returns a clone of the state names.
getNewAlphabet() - Method in class de.jstacs.data.alphabets.DiscreteAlphabetMapping
Returns the new Alphabet that is used for mapping.
getNewAlphabetContainer(AlphabetContainer, DiscreteAlphabetMapping...) - Static method in class de.jstacs.data.sequences.MappedDiscreteSequence
getNewComponentProbs(double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Estimates the weights of each component.
getNewDiscreteValue(int) - Method in class de.jstacs.data.alphabets.DiscreteAlphabetMapping
This method implements the main transformation of the values.
getNewInstance() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.CompositeLogPrior
getNewInstance() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.DoesNothingLogPrior
getNewInstance() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.LogPrior
This method returns an empty new instance of the current prior.
getNewInstance() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateLogPrior
getNewInstance() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SimpleGaussianSumLogPrior
getNewParameters(int, double[][], double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
getNewParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
This method set all parameters for the next sampling step
getNewParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingPhyloHMM
getNewParameters(int, double[][], double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method trains the internal models on the internal data set and the
given weights.
getNewParameters(int, double[][], double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.HiddenMotifMixture
getNewParametersForModel(int, int, int, double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method trains the internal model with index modelIndex
on the internal data set and the given weights.
getNewStartDistance() - Method in class de.jstacs.algorithms.optimization.ConstantStartDistance
getNewStartDistance() - Method in class de.jstacs.algorithms.optimization.LimitedMedianStartDistance
getNewStartDistance() - Method in interface de.jstacs.algorithms.optimization.StartDistanceForecaster
This method returns the new positive start distance.
getNewWeights(double[], double[], double[][]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Computes sequence weights and returns the score.
getNewWeights(double[], double[], double[][]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.MixtureTrainSM
Computes sequence weights and returns the score.
getNewWeights(double[], double[], double[][]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
getNewWeights(double[], double[], double[][]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
Computes sequence weights and returns the score.
getNextContext(int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method returns the next context that will be visited when visiting the child with index index
.
getNextLine(boolean) - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor.LineBasedResult
Returns the next line of the result
getNiceMax() - Method in class de.jstacs.utils.NiceScale
Returns the "nice" maximum value
getNiceMin() - Method in class de.jstacs.utils.NiceScale
Returns the "nice" minimum value
getNodeLabel(double, String, NumberFormat) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
getNodeLabel(double, String, NumberFormat) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.MultivariateGaussianEmission
getNodeLabel(double, String, NumberFormat) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getNodeLabel(double, String, NumberFormat) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.Emission
Returns the graphviz label of the node containing this emission.
getNodeLabel(double, String, NumberFormat) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.MixtureEmission
getNodeLabel(double, String, NumberFormat) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getNodeLabel(double, String, NumberFormat) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
getNodeShape(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
getNodeShape(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.MultivariateGaussianEmission
getNodeShape(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getNodeShape(boolean) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.Emission
Returns the graphviz string for the shape of the node.
getNodeShape(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.MixtureEmission
getNodeShape(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getNodeShape(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
getNormalizedVersion(DifferentiableStatisticalModel, int) - Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
This method returns a normalized version of a DifferentiableStatisticalModel.
getNucleicAcid() - Method in enum de.jstacs.data.DinucleotideProperty
Returns the kind of nucleic acid, e.g.
getNumberOfAlignedSequences() - Method in class de.jstacs.algorithms.alignment.StringAlignment
Returns the number of sequences in this alignment.
getNumberOfAllNodesBelow() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloNode
This method returns the total number of
PhyloNode
s in the subtree starting from this instance
getNumberOfAlphabets() - Method in class de.jstacs.data.AlphabetContainer
getNumberOfAvailableProcessors() - Static method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
This method returns the number of available processors.
getNumberOfBoundSequences(DataSet, double[], int) - Method in class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
Returns the number of sequences in data
that are predicted to be bound at least once by motif no.
getNumberOfChildren() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method returns the number of states that can be visited.
getNumberOfChildren(int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getNumberOfChildren(int, int) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
This method returns the number of children states for given index, i.e.
getNumberOfClasses() - Method in class de.jstacs.classifiers.AbstractClassifier
Returns the number of classes that can be distinguished.
getNumberOfClasses() - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
getNumberOfClasses(PerformanceMeasure[]) - Static method in class de.jstacs.classifiers.performanceMeasures.AbstractPerformanceMeasureParameterSet
getNumberOfCombinations(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.CombinationIterator
Returns the number of possible combinations.
getNumberOfComponents() - Method in interface de.jstacs.motifDiscovery.MotifDiscoverer
getNumberOfComponents() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getNumberOfComponents() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getNumberOfComponents() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
getNumberOfComponents() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
getNumberOfElements() - Method in class de.jstacs.clustering.hierachical.ClusterTree
Returns the number of leaves in this cluster tree.
getNumberOfElements() - Method in class de.jstacs.data.DataSet
Returns the number of elements, i.e.
getNumberOfElements() - Method in class de.jstacs.data.DataSet.WeightedDataSetFactory
Returns the number of elements, i.e.
getNumberOfElements() - Method in class de.jstacs.io.StringExtractor
Returns the number of
String
s that have been read.
getNumberOfElementsWithLength(int) - Method in class de.jstacs.data.DataSet
Returns the number of overlapping elements that can be extracted.
getNumberOfElementsWithLength(int, double[]) - Method in class de.jstacs.data.DataSet
Returns the weighted number of overlapping elements that can be extracted.
getNumberOfIndexes(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getNumberOfIndexes(int) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
This method computes the number of different indexes for a given layer of the matrix.
getNumberOfLines() - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier.DoubleTableResult
Returns the number of lines in this table.
getNumberOfMatches() - Method in class de.jstacs.algorithms.alignment.PairwiseStringAlignment
Returns the number of matches in this alignment.
getNumberOfModels() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
getNumberOfMotifs() - Method in interface de.jstacs.motifDiscovery.MotifDiscoverer
getNumberOfMotifs() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getNumberOfMotifs() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getNumberOfMotifs() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getNumberOfMotifs() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getNumberOfMotifs() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
getNumberOfMotifsInComponent(int) - Method in interface de.jstacs.motifDiscovery.MotifDiscoverer
Returns the number of motifs that are used in the component
component
of this
MotifDiscoverer
.
getNumberOfMotifsInComponent(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getNumberOfMotifsInComponent(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getNumberOfMotifsInComponent(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getNumberOfMotifsInComponent(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getNumberOfMotifsInComponent(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
getNumberOfNexts(int) - Method in class de.jstacs.parameters.MultiSelectionParameter
getNumberOfNexts(int) - Method in class de.jstacs.parameters.RangeParameter
getNumberOfNodes() - Method in class de.jstacs.algorithms.graphs.tensor.Tensor
Returns the number of nodes.
getNumberOfNodes() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloTree
This method returns the total number of nodes in the tree
getNumberOfParameters() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
getNumberOfParameters() - Method in class de.jstacs.parameters.ArrayParameterSet
getNumberOfParameters() - Method in class de.jstacs.parameters.ParameterSet
getNumberOfParameters() - Method in class de.jstacs.parameters.SequenceScoringParameterSet
getNumberOfParameters() - Method in interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.differentiable.logistic.LogisticDiffSS
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.differentiable.MultiDimensionalSequenceWrapperDiffSS
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.differentiable.UniformDiffSS
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.UniformDurationDiffSM
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
getNumberOfParameters() - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.DifferentiableEmission
Returns the number of parameters of this emission.
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
getNumberOfParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method returns the number of parameters in this transition element.
getNumberOfParameterSets(int) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier.DiffSMSamplingComponent
Returns the number of parameters set that can be retrieved from an internal file which has been creating while previous training.
getNumberOfParents() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
getNumberOfPossibilities() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
Returns the number of different possibilities that can be scored.
getNumberOfRecommendedStarts() - Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getNumberOfRecommendedStarts() - Method in interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore
This method returns the number of recommended optimization starts.
getNumberOfRecommendedStarts() - Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
getNumberOfRecommendedStarts() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getNumberOfRecommendedStarts() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getNumberOfRecommendedStarts() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getNumberOfRecommendedStarts() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
getNumberOfRecommendedStarts() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
getNumberOfRecommendedStarts() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
getNumberOfRecommendedStarts() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
getNumberOfRecommendedStarts() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getNumberOfRecommendedStarts() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getNumberOfResults() - Method in class de.jstacs.results.ResultSet
getNumberOfResultSets() - Method in class de.jstacs.results.ListResult
getNumberOfSequenceAnnotationsByType(String) - Method in class de.jstacs.data.sequences.Sequence
getNumberOfSequences() - Method in class de.jstacs.data.sequences.MultiDimensionalSequence
This method returns the number of internal sequences.
getNumberOfSequences() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.SequenceIterator
getNumberOfSpecificConstraints() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
Returns the number of specific constraints.
getNumberOfStarts() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
Returns the number of independent sampling starts
getNumberOfStarts() - Method in class de.jstacs.sampling.AbstractBurnInTestParameterSet
Returns the number of starts.
getNumberOfStarts(DifferentiableSequenceScore[]) - Static method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
Returns the number of recommended starts in a numerical optimization.
getNumberOfStarts() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.HMMTrainingParameterSet
The method returns the number of different starts.
getNumberOfStates() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns the number of the (hidden) states
getNumberOfStates() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getNumberOfStates() - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
This method returns the number of states underlying this transition
instance.
getNumberOfStationarySamplings() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
Returns the number of samplings steps in the stationary phase
getNumberOfStepsInStationaryPhase() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.SamplingHMMTrainingParameterSet
The method returns the number of steps to be done in the stationary phase.
getNumberOfStepsPerIteration() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.SamplingHMMTrainingParameterSet
This method returns the number of steps to be done in each start before testing for the end of the burn in phase (again).
getNumberOfTestSamplings() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
Returns the number of samplings between checks for the stationary phase
getNumberOfThreads() - Method in interface de.jstacs.algorithms.optimization.MultiThreadedFunction
Returns the number of used threads for evaluating the function and for determining the gradient of the function.
getNumberOfThreads() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
Returns the number of used threads for evaluating the function and for determining the gradient of the function.
getNumberOfThreads() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
This method returns the number of used threads while optimization.
getNumberOfThreads() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifierParameterSet
This method returns the number of threads that should be used during optimization.
getNumberOfThreads() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifierParameterSet
getNumberOfThreads() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns the number of threads that is internally used.
getNumberOfThreads() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.MultiThreadedTrainingParameterSet
This method returns the number of threads that should be used during optimization.
getNumberOfValues() - Method in class de.jstacs.parameters.MultiSelectionParameter
getNumberOfValues() - Method in interface de.jstacs.parameters.RangeIterator
Returns the number of values in the collection.
getNumberOfValues() - Method in class de.jstacs.parameters.RangeParameter
Returns the number of values in a list or range of parameter values.
getNumericalCharacteristics() - Method in class de.jstacs.classifiers.AbstractClassifier
getNumericalCharacteristics() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
getNumericalCharacteristics() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
getNumericalCharacteristics() - Method in class de.jstacs.classifiers.MappingClassifier
getNumericalCharacteristics() - Method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
getNumericalCharacteristics() - Method in class de.jstacs.sequenceScores.differentiable.AbstractDifferentiableSequenceScore
getNumericalCharacteristics() - Method in interface de.jstacs.sequenceScores.SequenceScore
getNumericalCharacteristics() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
getNumericalCharacteristics() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.DifferentiableStatisticalModelWrapperTrainSM
getNumericalCharacteristics() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM
getNumericalCharacteristics() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM
getNumericalCharacteristics() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEManager
getNumericalCharacteristics() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getNumericalCharacteristics() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
getNumericalCharacteristics() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.PFMWrapperTrainSM
getNumericalCharacteristics() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.UniformTrainSM
getNumericalCharacteristics() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.VariableLengthWrapperTrainSM
getOffsetForAucPR() - Method in class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
This method returns an offset that must be added to scores for computing PR curves.
getOptimalBranching(double[][], double[][], byte) - Static method in class de.jstacs.algorithms.graphs.Chu_Liu_Edmonds
Returns an optimal branching.
getOrder() - Method in class de.jstacs.algorithms.graphs.tensor.Tensor
Returns the order.
getOrder() - Method in enum de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder.RandomSeqType
This method returns the Markov order.
getOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.MarkovModelDiffSM
Returns the order of the inhomogeneous Markov model.
getOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.InhomogeneousMarkov
Returns the order of the Markov model as defined in the constructor
getOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.InhomogeneousMarkov.InhomogeneousMarkovParameterSet
Returns the order of the
InhomogeneousMarkov
structure
measure as defined by this set of parameters.
getOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMExplainingAwayResidual.PMMExplainingAwayResidualParameterSet
Returns the order defined by this set of parameters.
getOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMMutualInformation.PMMMutualInformationParameterSet
Returns the order defined by this set of parameters.
getOrder() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
Returns the order of the Slim model
getOriginal() - Method in class de.jstacs.data.sequences.Sequence.SubSequence
Returns the original sequence, this sequence is a sub-sequence of.
getOriginalIndex() - Method in class de.jstacs.clustering.hierachical.ClusterTree
Returns the original index of the root node of this cluster tree
getOriginalName() - Method in class de.jstacs.results.Result
Returns the original name (i.e., the name upon object creation) of this
Result
,
which may be just the name if
Result.rename(String)
has not been called on this object, yet.
getOutfilePrefix() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
Returns the prefix of the temporary files for storing sampled
parameter values
getOutput(byte[], double) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhCondProb
This method is used to create random sequences.
getOutputStream() - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor.Protocol
getOutputStream() - Method in class de.jstacs.utils.SafeOutputStream
getPairwiseDistanceMatrix(DistanceMetric<T>, T...) - Static method in class de.jstacs.clustering.distances.DistanceMetric
Returns the matrix of all pairwise distance of the supplied objects, where rows and colums are indexed in the order
of the supplied objects.
getPairwiseDistanceMatrix(int, StatisticalModel...) - Method in class de.jstacs.clustering.distances.SequenceScoreDistance
Multi-threaded computation of the pairwise distance matrix.
getParameterAt(int) - Method in class de.jstacs.parameters.ArrayParameterSet
getParameterAt(int) - Method in class de.jstacs.parameters.ParameterSet
getParameterAt(int) - Method in class de.jstacs.parameters.SequenceScoringParameterSet
getParameterFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
Returns the
BNDiffSMParameter
that is responsible for the suffix of
sequence
seq
starting at position
start
.
getParameterFor(int[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
Returns the
BNDiffSMParameter
that is responsible for the suffix of
sequence
seq
starting at position
start
.
getParameterForName(String) - Method in class de.jstacs.parameters.ParameterSet
getParameterFromTag(String) - Method in class de.jstacs.parameters.ParameterSetTagger
This method returns the
Parameter
specified by the
tag
getParameterIndexesForSamplingStep(int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
Returns the indexes of the parameters, incremented by offset
, that
shall be sampled in step step
of a grouped sampling process.
getParameters(OptimizableFunction.KindOfParameter, double[]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractOptimizableFunction
This method enables the user to get the parameters without creating a new
array.
getParameters(OptimizableFunction.KindOfParameter) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractOptimizableFunction
getParameters(OptimizableFunction.KindOfParameter, double[]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.DiffSSBasedOptimizableFunction
getParameters(OptimizableFunction.KindOfParameter) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.OptimizableFunction
Returns some parameters that can be used for instance as start
parameters.
getParameterSetContainingASingleDoubleValue(double) - Method in class de.jstacs.classifiers.assessment.RepeatedHoldOutAssessParameterSet
Creates a new
ParameterSet
containing a single
double
-
SimpleParameter
.
getParameterSetFor(Class<? extends InstantiableFromParameterSet>) - Static method in class de.jstacs.utils.SubclassFinder
getParametersInCollection() - Method in class de.jstacs.parameters.AbstractSelectionParameter
Returns the possible values in this collection.
getParent() - Method in class de.jstacs.parameters.Parameter
getParent() - Method in class de.jstacs.parameters.ParameterSet
getParents(DataSet, DataSet, double[], double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTExplainingAwayResidual
getParents(DataSet, DataSet, double[], double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTMutualInformation
getParents(DataSet, DataSet, double[], double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.InhomogeneousMarkov
getParents(DataSet, DataSet, double[], double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Returns the optimal parents for the given data and weights.
getParents(DataSet, DataSet, double[], double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMExplainingAwayResidual
getParents(DataSet, DataSet, double[], double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMMutualInformation
getParser() - Method in class de.jstacs.results.DataSetResult
getPartialDataSet(int, int) - Method in class de.jstacs.data.DataSet
Returns a new
DataSet
that contains all elements of this
DataSet
that are specified
by the supplied
start
(inclusive) and
end
(exclusive) indexes.
getPartialDataSet(int[]...) - Method in class de.jstacs.data.DataSet
Returns a new
DataSet
that contains all elements of this
DataSet
that are specified
by the supplied pairs of start and end indexes in
indexes
.
getPartialLengths() - Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
This method returns a deep copy of the internally used partial lengths of the parts.
getPath() - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor.FileResult
Returns the path of the directory containing the file
getPercent() - Method in class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutAssessParameterSet
Returns the percentage of user supplied data that is used in each
iteration as test data set.
getPercentage() - Method in class de.jstacs.tools.ProgressUpdater
Returns the percentage of a tool's work that has been completed so far.
getPercents() - Method in class de.jstacs.classifiers.assessment.RepeatedHoldOutAssessParameterSet
Returns an array containing for each class the percentage of user
supplied data that is used in each iteration as test dataset.
getPFM() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.PFMWrapperTrainSM
Returns a deep copy of the internal PFM.
getPFM(DataSet) - Static method in class de.jstacs.utils.PFMComparator
getPFM(DataSet, int, int) - Static method in class de.jstacs.utils.PFMComparator
Returns a position frequency matrix (PFM, rows=positions, columns=symbols) for the given subset of
DataSet
.
getPFM(DataSet, double[]) - Static method in class de.jstacs.utils.PFMComparator
getPlotCommands(REnvironment, String, AbstractScoreBasedClassifier.DoubleTableResult...) - Static method in class de.jstacs.classifiers.AbstractScoreBasedClassifier.DoubleTableResult
This method copies the data to the server side and creates a
StringBuffer
containing the plot commands.
getPlotCommands(REnvironment, String, int[], AbstractScoreBasedClassifier.DoubleTableResult...) - Static method in class de.jstacs.classifiers.AbstractScoreBasedClassifier.DoubleTableResult
This method copies the data to the server side and creates a
StringBuffer
containing the plot commands.
getPlotCommands(REnvironment, String, String[], AbstractScoreBasedClassifier.DoubleTableResult...) - Static method in class de.jstacs.classifiers.AbstractScoreBasedClassifier.DoubleTableResult
This method copies the data to the server side and creates a
StringBuffer
containing the plot commands.
getPlugInParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSMParameterSet
Returns true if plug-in parameters shall be used when creating a
BayesianNetworkDiffSM
from this set of parameters.
getPosition() - Method in class de.jstacs.data.sequences.annotation.LocatedSequenceAnnotation
getPosition() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
Returns the position of the symbol this parameter is responsible for as
defined in the constructor.
getPosition(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
Returns the position with index index
.
getPositionDependentKMerProb(Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
Returns the probability of
kmer
for all possible positions in this
BayesianNetworkDiffSM
starting at position
kmer.getLength()-1
.
getPositionForParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
Returns the position in the sequence the parameter index
is
responsible for.
getPositions() - Method in class de.jstacs.sequenceScores.differentiable.logistic.ProductConstraint
Returns a clone of the internal positions.
getPositions() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
Returns a clone of the array of used positions.
getPossibleLength(TrainableStatisticalModel...) - Static method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
getPossibleLength() - Method in class de.jstacs.data.AlphabetContainer.AbstractAlphabetContainerParameterSet
getPossibleLength() - Method in class de.jstacs.data.AlphabetContainer
getPossibleLength() - Method in class de.jstacs.data.AlphabetContainerParameterSet
getPossibleLength() - Method in class de.jstacs.data.alphabets.DNAAlphabetContainer.DNAAlphabetContainerParameterSet
getProbFor(Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
getProbsForComponent(Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
Returns the probabilities for each component given a
Sequence
.
getProducer() - Method in class de.jstacs.results.TextResult
Returns the producer (i.e., the tool/application/program) that created this
TextResult
.
getProfile(StatisticalModel, boolean) - Method in class de.jstacs.clustering.distances.RandomSequenceScoreDistance
getProfile(StatisticalModel, boolean) - Method in class de.jstacs.clustering.distances.SequenceScoreDistance
Returns the score profile for the model.
getProfileOfScoresFor(int, int, Sequence, int, MotifDiscoverer.KindOfProfile) - Method in interface de.jstacs.motifDiscovery.MotifDiscoverer
Returns the profile of the scores for component component
and motif motif
at all possible start positions of the motif
in the sequence sequence
beginning at startpos
.
getProfileOfScoresFor(int, int, Sequence, int, MotifDiscoverer.KindOfProfile) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getProfileOfScoresFor(int, int, Sequence, int, MotifDiscoverer.KindOfProfile) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getProfileOfScoresFor(int, int, Sequence, int, MotifDiscoverer.KindOfProfile) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getProfileOfScoresFor(int, int, Sequence, int, MotifDiscoverer.KindOfProfile) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getProfileOfScoresFor(int, int, Sequence, int, MotifDiscoverer.KindOfProfile) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
getProfilesForMotif(StatisticalModel, int, boolean, boolean) - Static method in class de.jstacs.clustering.distances.DeBruijnMotifComparison
Returns the score profile on a De Bruin sequence for a De Bruijn sequence.
getProfilesForMotif(CyclicSequenceAdaptor[], StatisticalModel, boolean, boolean) - Static method in class de.jstacs.clustering.distances.DeBruijnMotifComparison
Returns the score profile on a De Bruin sequence for a De Bruijn sequence.
getProperty(Sequence, DinucleotideProperty.Smoothing) - Method in enum de.jstacs.data.DinucleotideProperty
Computes this dinucleotide property for all overlapping twomers in original
, smoothes the result using smoothing
,
and returns the smoothed property as a double
array.
getProperty(Sequence, int) - Method in enum de.jstacs.data.DinucleotideProperty
getProperty(Sequence) - Method in enum de.jstacs.data.DinucleotideProperty
Computes this dinucleotide property for all overlapping twomers in original
and returns the result as a double
array of length original.getLength()-1
getPropertyAsSequence(Sequence) - Method in enum de.jstacs.data.DinucleotideProperty
Computes this dinucleotide property for all overlapping dimers in
original
and returns the result as a
Sequence
of length
original.getLength()-1
getPropertyAsSequence(Sequence, DinucleotideProperty.Smoothing) - Method in enum de.jstacs.data.DinucleotideProperty
Computes this dinucleotide property for all overlapping dimers in
original
, smoothes the result using
smoothing
,
and returns the smoothed property as a
Sequence
.
getPropertyImage(Sequence, DinucleotideProperty, DinucleotideProperty.Smoothing, REnvironment, int, String, int, int) - Static method in enum de.jstacs.data.DinucleotideProperty
getPropertyImage(DataSet, DinucleotideProperty, DinucleotideProperty.Smoothing, REnvironment, int, String, int, int) - Static method in enum de.jstacs.data.DinucleotideProperty
getProtocol(boolean) - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor
Returns an object for writing a protocol of a program run
getPseudoCount() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
Returns the pseudocount as given in the constructor.
getPubMedID() - Method in enum de.jstacs.data.DinucleotideProperty
Returns the PubMed ID of the publication where the parameters of this property has been published.
getPValue(Sequence, DataSet) - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
Returns the p-value for a
Sequence
candidate
with
respect to a given background
DataSet
.
getPValue(DataSet, DataSet) - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
getPValue(double[], double) - Static method in class de.jstacs.classifiers.utils.PValueComputation
This method searches for the insertion point of the score in a given
sorted array of scores and returns the p-value for this score.
getPValue(double[], double, int) - Static method in class de.jstacs.classifiers.utils.PValueComputation
This method searches for the insertion point of the score in a given
sorted array of scores from index start
and returns the
p-value for this score.
getPWM() - Method in interface de.jstacs.clustering.hierachical.PWMSupplier
Returns the position weight matrix.
getPWM(int, DataSet, double[], int, int) - Method in class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
getPWM() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getPWM() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.PFMWrapperTrainSM
getPWM(DataSet, int, int) - Static method in class de.jstacs.utils.PFMComparator
Returns a position weight matrix (PWM, rows=positions, columns=symbols, containing probabilities) for the given subset of
DataSet
.
getPWMAndPosDist(int, DataSet, double[], double[], int, int) - Method in class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
Returns the Position weight matrix (PWM) of the binding sites of motif
motif
in the data set
data
of the
MotifDiscoverer
of this
SignificantMotifOccurrencesFinder
together with standard deviation of binding site positions computed using the provided
mean
values for each sequence.
getPWMAndPosDist(int, DataSet, double[], double[], int, int, LinkedList<Sequence>, DoubleList, DoubleList) - Method in class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
Returns the position weight matrix and standard deviation of the position distribution using the given mean.
getPWMAndPositions(int, DataSet, double[], int, int) - Method in class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
Returns the Position weight matrix (PWM) of the binding sites of motif
motif
in the data set
data
of the
MotifDiscoverer
of this
SignificantMotifOccurrencesFinder
together with the positions of the binding sites within the sequences of
data
and the corresponding p-values.
getPWMAndPositions(int, DataSet, double[], int, int, int[][], double[][], double[], double[], LinkedList<Sequence>, DoubleList, DoubleList) - Method in class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
Returns the Position weight matrix (PWM) of the binding sites of motif
motif
in the data set
data
of the
MotifDiscoverer
of this
SignificantMotifOccurrencesFinder
and fills with the positions of the binding sites within the sequences of
data
and the corresponding p-values into the corresponding arrays.
getPWMParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
Returns the unconditional, normalized (PWM) probabilities of this Slim model
getRandomSequence(Random, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousMM
getRandomSequence(Random, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM
This method creates a random
Sequence
from a trained homogeneous
model.
getRangedInstance() - Method in class de.jstacs.parameters.AbstractSelectionParameter
getRangedInstance() - Method in interface de.jstacs.parameters.Rangeable
Returns an instance of
RangeIterator
that has the same properties
as the current instance, but accepts a range or list of values.
getRangedInstance() - Method in class de.jstacs.parameters.SimpleParameter
getRawResult() - Method in class de.jstacs.results.ListResult
Returns a copy of the internal list of
ResultSet
s.
getReference() - Method in enum de.jstacs.data.DinucleotideProperty
Returns the reference of the publication where the parameters of this property has been published.
getReferenceClass() - Method in class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutAssessParameterSet
Returns the index of the reference class.
getReferenceSequence() - Method in class de.jstacs.data.sequences.annotation.ReferenceSequenceAnnotation
Returns the reference sequence.
getReferenceSequence(Sequence) - Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.ReferenceSequenceDiscreteEmission
Returns the reference sequence annotated to seq
.
getRegEx() - Method in class de.jstacs.io.RegExFilenameFilter
Returns a representation of all used regular expressions.
getRepeats() - Method in class de.jstacs.classifiers.assessment.RepeatedHoldOutAssessParameterSet
getRepeats() - Method in class de.jstacs.classifiers.assessment.RepeatedSubSamplingAssessParameterSet
getRepeats() - Method in class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutAssessParameterSet
getResultAt(int) - Method in class de.jstacs.results.NumericalResultSet
getResultAt(int) - Method in class de.jstacs.results.ResultSet
getResultForName(String) - Method in class de.jstacs.results.ResultSet
getResultInstance() - Method in class de.jstacs.results.StorableResult
getResults(LinkedList, DataSet[], double[][], AbstractPerformanceMeasureParameterSet<? extends PerformanceMeasure>, boolean) - Method in class de.jstacs.classifiers.AbstractClassifier
This method computes the results for any evaluation of the classifier.
getResults(LinkedList, DataSet[], double[][], AbstractPerformanceMeasureParameterSet<? extends PerformanceMeasure>, boolean) - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
getResults(LinkedList, DataSet[], double[][], AbstractPerformanceMeasureParameterSet<? extends PerformanceMeasure>, boolean) - Method in class de.jstacs.classifiers.MappingClassifier
getResults() - Method in class de.jstacs.results.ResultSet
Returns all internal results as an array of
Result
s.
getReverseComplement(ComplementableDiscreteAlphabet, double[][]) - Static method in class de.jstacs.utils.PFMComparator
This method returns the PFM that is the reverse complement of the given PFM.
getReverseComplementaryDataSet() - Method in class de.jstacs.data.DataSet
getReverseComplementDistributions(ComplementableDiscreteAlphabet, double[][][]) - Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
This method computes the reverse complement distributions for given conditional distributions.
getReverseSwitches() - Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
This method returns a deep copy of the internally used switches for the parts whether to use the corresponding
DifferentiableSequenceScore
forward or as reverse complement.
getRNotation(String, NumberFormat) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
This method returns the distribution in
R notation.
getRNotation(String, NumberFormat) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
getRNotation(String, NumberFormat) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
getRNotation(String, NumberFormat) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.UniformDurationDiffSM
getRoot() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloTree
This method returns the root node of the tree
getRootValue(int) - Method in class de.jstacs.algorithms.graphs.tensor.AsymmetricTensor
getRootValue(int) - Method in class de.jstacs.algorithms.graphs.tensor.SubTensor
getRootValue(int) - Method in class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
getRootValue(int) - Method in class de.jstacs.algorithms.graphs.tensor.Tensor
Returns the value for child
as root.
getRunTimeException(Exception) - Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
getSafeOutputStream(OutputStream) - Static method in class de.jstacs.utils.SafeOutputStream
getSamplingComponent() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
getSamplingGroups(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getSamplingGroups(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.MarkovModelDiffSM
getSamplingGroups(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getSamplingGroups(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getSamplingGroups(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getSamplingGroups(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getSamplingGroups(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
getSamplingGroups(int) - Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.SamplingDifferentiableStatisticalModel
Returns groups of indexes of parameters that shall be drawn
together in a sampling procedure
getSamplingGroups(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getSamplingGroups(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getSamplingScheme() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
Returns the sampling scheme
getSaver(Class<? extends T>) - Static method in class de.jstacs.results.savers.ResultSaverLibrary
Returns the most suitable
ResultSaver
(if any) currently registered in the library.
getScale() - Method in class de.jstacs.parameters.RangeParameter
Returns a description of the the scale of a range of parameter values.
getScatterplot(AbstractScoreBasedClassifier, AbstractScoreBasedClassifier, DataSet, DataSet, REnvironment, boolean) - Static method in class de.jstacs.classifiers.utils.ClassificationVisualizer
This method returns an
ImageResult
containing a scatter plot of
the scores for the given classifiers
cl1
and
cl2
.
getScore(Tensor, int[][]) - Static method in class de.jstacs.algorithms.graphs.DAG
Returns the score for any graph.
getScore(Sequence, int) - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
This method returns the score for a given
Sequence
and a given
class.
getScore(Sequence, int, boolean) - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
This method returns the score for a given
Sequence
and a given
class.
getScore(Sequence, int, boolean) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
getScore(Sequence, int, boolean) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
getScore(Sequence, int, boolean) - Method in class de.jstacs.classifiers.MappingClassifier
getScore(Sequence, int, boolean) - Method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
getScoreFor(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEM
Returns the score for the sequence
beginning at start
.
getScoreForBestRun() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Returns the value of the optimized function from the best run of the last
training.
getScoreForPath(Tensor, int, byte, int[]) - Static method in class de.jstacs.algorithms.graphs.DAG
Returns the score for a given path path
using the first
l
nodes and dependencies of order k
.
getScores(DataSet) - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
This method returns the scores of the classifier for any
Sequence
in the
DataSet
.
getScores(DataSet) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
getScores(DataSet) - Method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
getSecondElement() - Method in class de.jstacs.utils.Pair
This method returns the second element.
getSelected() - Method in class de.jstacs.parameters.MultiSelectionParameter
Returns the indexes of the selected options.
getSelected() - Method in class de.jstacs.parameters.SelectionParameter
Returns the index of the selected value.
getSelectionParameter(Class<? extends ParameterSet>, String, String, String, boolean) - Static method in class de.jstacs.utils.SubclassFinder
getSequence(int) - Method in class de.jstacs.data.sequences.MultiDimensionalSequence
This method returns the internal sequence with index index
.
getSequenceAnnotationByType(String, int) - Method in class de.jstacs.data.sequences.Sequence
getSequenceAnnotationByTypeAndIdentifier(String, String) - Method in class de.jstacs.data.sequences.Sequence
getSequenceAnnotationIndexMatrix(String, Hashtable<String, Integer>, String, Hashtable<String, Integer>) - Method in class de.jstacs.data.DataSet
getSequenceWeights() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractOptimizableFunction
getSequenceWeights() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.OptimizableFunction
getShannonEntropy(StatisticalModel, int) - Static method in class de.jstacs.utils.StatisticalModelTester
This method computes the Shannon entropy for any discrete model
m
and all sequences of length
, if possible.
getShannonEntropyInBits(StatisticalModel, int) - Static method in class de.jstacs.utils.StatisticalModelTester
This method computes the Shannon entropy in bits for any discrete model
m
and all sequences of length
, if possible.
getShortFromParameter(Parameter) - Static method in class de.jstacs.io.ParameterSetParser
Returns the
short
which is the value of the
Parameter
par
.
getShortName() - Method in interface de.jstacs.tools.JstacsTool
Returns a name (preferably short and without spaces) for referring to this tool on the command line.
getSimplifiedAlphabetContainer(Alphabet[], int[]) - Static method in class de.jstacs.data.AlphabetContainer
getSingelton(Class<? extends Singleton>) - Static method in class de.jstacs.Singleton.SingletonHandler
This method helps to retrieve the single instance of a
Singleton
singletonClass
.
getSizeOfEventSpace() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
getSizeOfEventSpace() - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.DifferentiableEmission
Returns the size of the event space, i.e., the number of possible outcomes,
for the random variables of this emission
getSizeOfEventSpace() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
getSizeOfEventSpace() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
getSizeOfEventSpace() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
getSizeOfEventSpace(int) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.DifferentiableTransition
Returns the size of the event space, i.e., the number of possible outcomes,
for the random variable of parameter index
getSizeOfEventSpace(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
getSizeOfEventSpaceForRandomVariablesOfParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) - Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.DifferentiableStatisticalModel
Returns the size of the event space of the random variables that are
affected by parameter no.
getSizeOfEventSpaceForRandomVariablesOfParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
getSizeOfEventSpaceForRandomVariablesOfParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.UniformDiffSM
getSizeOfEventSpaceForRandomVariablesOfParameter(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
getSmoothedProfile(int, String...) - Method in class de.jstacs.motifDiscovery.KMereStatistic
This method returns an array of smoothed profiles.
getSmoothedProfile(int, Sequence...) - Method in class de.jstacs.motifDiscovery.KMereStatistic
This method returns an array of smoothed profiles.
getSortedInitialParameters(DifferentiableSequenceScore[], MutableMotifDiscovererToolbox.InitMethodForDiffSM[], DiffSSBasedOptimizableFunction, int, OutputStream, int) - Static method in class de.jstacs.motifDiscovery.MutableMotifDiscovererToolbox
getSortedScoresForMotifAndFlanking(DataSet, DataSet, String) - Static method in class de.jstacs.motifDiscovery.MotifDiscoveryAssessment
Returns the scores read from the prediction
pred
for the motif with identifier
identifier
and flanking sequences as annotated in
the
DataSet
data.
getSortedValuesForMotifAndFlanking(DataSet, double[][], double, double, String) - Static method in class de.jstacs.motifDiscovery.MotifDiscoveryAssessment
This method provides some score arrays that can be used in
AbstractPerformanceMeasure
to determine some
curves or area under curves based on the values of the predictions.
getSpecificName() - Method in class de.jstacs.classifiers.performanceMeasures.MaximumCorrelationCoefficient
getSpecificName() - Method in class de.jstacs.classifiers.performanceMeasures.MaximumFMeasure
getSpecificName() - Method in class de.jstacs.classifiers.performanceMeasures.MaximumNumericalTwoClassMeasure
This method returns a specific name of the measure including any parameters.
getStart() - Method in class de.jstacs.data.sequences.Sequence.SubSequence
Returns the start of this sub-sequence in the original sequence.
getStartDistance() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.NumericalHMMTrainingParameterSet
This method returns the start distance that should be used in the line search during the optimization.
getStartIndexOfAlignmentForFirst() - Method in class de.jstacs.algorithms.alignment.PairwiseStringAlignment
This method returns the start index of the alignment in the first sequence.
getStartNode() - Method in class de.jstacs.algorithms.graphs.Edge
Returns the start node of the edge.
getStartPositions(int, DataSet, int, int) - Method in class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
This method returns a list of start positions of binding sites.
getStartValue() - Method in class de.jstacs.parameters.RangeParameter
Returns the start value of a range of parameter values or
null
if no range was specified.
getStatePosteriorMatrixFor(Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns the log state posterior of all states for a sequence.
getStatePosteriorMatrixFor(DataSet) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns the state posteriors for all sequences of the data set data
.
getStationaryDistribution(double[], int) - Static method in class de.jstacs.utils.StationaryDistribution
This method return the stationary distribution.
getStatistics() - Method in class de.jstacs.results.MeanResultSet
getStatistics(DataSet, double[], int, double) - Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
getStatisticsOrderTwo(DataSet, double[], int, double) - Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
getSteps() - Method in class de.jstacs.parameters.RangeParameter
Returns the number of steps of a range of parameter values or
0
if no range was specified.
getStoreAll() - Method in class de.jstacs.classifiers.assessment.ClassifierAssessmentAssessParameterSet
getStrand(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
getStrand(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
getStrandedness() - Method in class de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength
Returns the strandedness, i.e the orientation of this annotation.
getStrandProbabilitiesFor(int, int, Sequence, int) - Method in interface de.jstacs.motifDiscovery.MotifDiscoverer
This method returns the probabilities of the strand orientations for a given subsequence if it is
considered as site of the motif model in a specific component.
getStrandProbabilitiesFor(int, int, Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
getStrandProbabilitiesFor(int, int, Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
getStrandProbabilitiesFor(int, int, Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.MixtureDiffSM
getStrandProbabilitiesFor(int, int, Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.ExtendedZOOPSDiffSM
getStrandProbabilitiesFor(int, int, Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
getStringFromParameter(Parameter) - Static method in class de.jstacs.io.ParameterSetParser
getStringRepresentation(Object) - Method in class de.jstacs.data.sequences.ArbitraryFloatSequence
getStringRepresentation(Object) - Method in class de.jstacs.data.sequences.ArbitrarySequence
getStringRepresentation(Object) - Method in class de.jstacs.data.sequences.CyclicSequenceAdaptor
getStringRepresentation(Object) - Method in class de.jstacs.data.sequences.MultiDimensionalSequence
getStringRepresentation(Object) - Method in class de.jstacs.data.sequences.Sequence
This method creates a String representation from the given representation.
getStringRepresentation(Object) - Method in class de.jstacs.data.sequences.Sequence.RecursiveSequence
getStringRepresentation(Object) - Method in class de.jstacs.data.sequences.SimpleDiscreteSequence
getStructure() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM
getStructure() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGTrainSM
getStructure() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM
Returns a
String
representation of the underlying graph.
getStructure() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEManager
getStructure() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
Returns a
String
representation of the structure of the used
models.
getStructure(DataSet, double[], StructureLearner.ModelType, byte, StructureLearner.LearningType) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.StructureLearner
This method finds the optimal structure of a model by using a given
learning method (in some sense).
getStructure(Tensor, StructureLearner.ModelType, byte) - Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.StructureLearner
This method can be used to determine the optimal structure of a model.
getStructureFromPath(int[], Tensor) - Static method in class de.jstacs.algorithms.graphs.DAG
Extracts the structure from a given path path
and
score-"function".
getSubAnnotations() - Method in class de.jstacs.data.sequences.annotation.SequenceAnnotation
getSubContainer(int, int) - Method in class de.jstacs.data.AlphabetContainer
Returns a sub-container with the
Alphabet
s for the positions
starting at
start
and with length
length
.
getSubSequence(AlphabetContainer, int) - Method in class de.jstacs.data.sequences.Sequence
This method should be used if one wants to create a
DataSet
of
subsequences of defined length.
getSubSequence(AlphabetContainer, int, int) - Method in class de.jstacs.data.sequences.Sequence
This method should be used if one wants to create a
DataSet
of
subsequences of defined length.
getSubSequence(int) - Method in class de.jstacs.data.sequences.Sequence
getSubSequence(int, int) - Method in class de.jstacs.data.sequences.Sequence
getSubTrees() - Method in class de.jstacs.clustering.hierachical.ClusterTree
Returns the sub-trees of this cluster tree root node
getSuffixDataSet(int) - Method in class de.jstacs.data.DataSet
This method enables you to use only a suffix of all elements, i.e.
getSumOfDeviation(StatisticalModel, StatisticalModel, int) - Static method in class de.jstacs.utils.StatisticalModelTester
This method computes the sum of deviations between the probabilities for
all sequences of length
for discrete models m1
and m2
.
getSumOfDistribution(StatisticalModel, int) - Static method in class de.jstacs.utils.StatisticalModelTester
This method computes the marginal distribution for any discrete model
m
and all sequences of length
, if possible.
getSumOfHyperparameter() - Method in class de.jstacs.utils.random.DirichletMRGParams
Returns the sum of the hyperparameters (entries of the hyperparameter
vector) of the underlying Dirichlet distribution.
getSumOfHyperparameter() - Method in class de.jstacs.utils.random.ErlangMRGParams
Returns the sum of the hyperparameters (entries of the hyperparameter
vector) of the underlying Erlang distribution.
getSumOfHyperParameters(int, int, double) - Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
getSumOfWeights() - Method in class de.jstacs.data.DataSet.WeightedDataSetFactory
Returns the sum of all weights.
getSuperClassOf(T...) - Static method in class de.jstacs.io.ArrayHandler
This method returns the deepest class in the class hierarchy that is the
class or a superclass of all instances in the array.
getSuperSequence(int) - Method in class de.jstacs.data.sequences.CyclicSequenceAdaptor
Returns a new cyclic sequence using the internal sequence of this
CyclicSequenceAdaptor
but with
the supplied virtual length
getSymbol(int, double) - Method in class de.jstacs.data.AlphabetContainer
getSymbolAt(int) - Method in class de.jstacs.data.alphabets.DiscreteAlphabet
Returns the symbol at position i
in the alphabet.
getSymKLDivergence(StatisticalModel, StatisticalModel, int) - Static method in class de.jstacs.utils.StatisticalModelTester
Returns the difference of the Kullback-Leibler-divergences, i.e.
getTempDir() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
getTensor(DataSet, double[], byte, StructureLearner.LearningType) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.StructureLearner
This method can be used to compute a
Tensor
that can be used to
determine the optimal structure.
getTerminantionCondition() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifierParameterSet
This method returns the
AbstractTerminationCondition
for stopping the training, e.g., if the
difference of the scores between two iterations is smaller than a given
threshold the training is stopped.
getTerminationCondition() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.MaxHMMTrainingParameterSet
This method returns the
AbstractTerminationCondition
for stopping the training, e.g., if the
difference of the scores between two iterations is smaller than a given
threshold the training is stopped.
getThreads() - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor
Returns the number of threads given by the Galaxy configuration
getThreshold(double[], int) - Static method in class de.jstacs.classifiers.utils.PValueComputation
This method returns the threshold that determines if an observed score is
significant.
getThreshold() - Method in class de.jstacs.sampling.VarianceRatioBurnInTestParameterSet
getTickSpacing() - Method in class de.jstacs.utils.NiceScale
Returns the spacing between the tick marks
getTimeInstance(OutputStream) - Static method in class de.jstacs.utils.Time
This method tries to return a
UserTime
instance, if not possible (due to native code) it returns a
RealTime
instance.
getToolName() - Method in interface de.jstacs.tools.JstacsTool
Returns a descriptive, human readable name for this tool.
getToolName() - Method in class de.jstacs.tools.ToolResult
getToolParameters() - Method in interface de.jstacs.tools.JstacsTool
Returns the input parameters of this tool.
getToolParameters() - Method in class de.jstacs.tools.ToolResult
Returns the tool's parameters that have been used to create the results stored in this
ToolResult
.
getToolVersion() - Method in interface de.jstacs.tools.JstacsTool
Returns a descriptive, human readable version for this tool.
getTopologicalOrder(int[][]) - Static method in class de.jstacs.algorithms.graphs.TopSort
Returns the topological order of indexes according to
parents2
.
getTopologicalOrder2(byte[][]) - Static method in class de.jstacs.algorithms.graphs.TopSort
Computes a topological ordering for a given graph.
getTrain_TestNumbers(boolean) - Method in class de.jstacs.classifiers.assessment.RepeatedSubSamplingAssessParameterSet
Returns an array containing the number of elements the subsampled (train
| test) data sets should consist of.
getTrainingParams() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
Returns a clone of the training parameters
getTransisionElements() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
Returns the transition elements of the internal
Transition
.
getTransisionElements() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
Returns a clone of the internal transition elements.
getTransitionElementIndex(int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
getTrueIndexForLastGetBest() - Method in class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
getType() - Method in class de.jstacs.data.AlphabetContainer
getType() - Method in enum de.jstacs.data.DinucleotideProperty
Returns the type of this property.
getType() - Method in class de.jstacs.data.sequences.annotation.SequenceAnnotation
getUniqueHueValues(int) - Static method in class de.jstacs.utils.ToolBox
Creates an array of hue values that can be used for the representation
of probabilities.
getValidator() - Method in class de.jstacs.parameters.SimpleParameter
getValue(byte, int, int...) - Method in class de.jstacs.algorithms.graphs.tensor.AsymmetricTensor
getValue(byte, int, int...) - Method in class de.jstacs.algorithms.graphs.tensor.SubTensor
getValue(byte, int, int...) - Method in class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
getValue(byte, int, int...) - Method in class de.jstacs.algorithms.graphs.tensor.Tensor
Returns the value for the edge
parents[0],...,parents[k-1] -> child
.
getValue() - Method in class de.jstacs.AnnotatedEntity
getValue() - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier.DoubleTableResult
getValue() - Method in class de.jstacs.parameters.EnumParameter
getValue() - Method in class de.jstacs.parameters.FileParameter
getValue() - Method in class de.jstacs.parameters.MultiSelectionParameter
getValue() - Method in class de.jstacs.parameters.ParameterSetContainer
getValue() - Method in class de.jstacs.parameters.RangeParameter
getValue() - Method in class de.jstacs.parameters.SelectionParameter
getValue() - Method in class de.jstacs.parameters.SimpleParameter
getValue() - Method in class de.jstacs.results.DataSetResult
getValue() - Method in class de.jstacs.results.ImageResult
getValue() - Method in class de.jstacs.results.ListResult
getValue() - Method in class de.jstacs.results.PlotGeneratorResult
getValue() - Method in class de.jstacs.results.SimpleResult
getValue() - Method in class de.jstacs.results.StorableResult
getValue() - Method in class de.jstacs.results.TextResult
getValue(Sequence, int) - Method in interface de.jstacs.sequenceScores.differentiable.logistic.LogisticConstraint
getValue(Sequence, int) - Method in class de.jstacs.sequenceScores.differentiable.logistic.ProductConstraint
getValue() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
Returns the current value of this parameter.
getValue() - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor.FileResult
getValueFor(String) - Method in class de.jstacs.parameters.MultiSelectionParameter
Returns the value for the option with key key
.
getValueFor(int) - Method in class de.jstacs.parameters.MultiSelectionParameter
Returns the value of the option with no.
getValueFromTag(String) - Method in class de.jstacs.parameters.ParameterSetTagger
This method returns the value of the
Parameter
specified by the
tag
.
getValueFromTag(String, Class<T>) - Method in class de.jstacs.parameters.ParameterSetTagger
This method returns the casted value of the
Parameter
specified by the
tag
.
getValueOfAIC(StatisticalModel, DataSet, int) - Static method in class de.jstacs.utils.StatisticalModelTester
This method computes the value of Akaikes Information Criterion (AIC).
getValueOfBIC(StatisticalModel, DataSet, int) - Static method in class de.jstacs.utils.StatisticalModelTester
This method computes the value of the Bayesian Information Criterion
(BIC).
getValues() - Method in class de.jstacs.parameters.MultiSelectionParameter
Returns the values of all selected options as an array.
getValuesForEachNucleotide(DataSet, int, boolean) - Method in class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
This method determines a score for each possible starting position in each of the sequences in data
that this position is covered by at least one motif occurrence of the
motif with index index
.
getValuesFromSequence(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
This method extracts the values form a sequence.
getVersionInformation() - Method in class de.jstacs.utils.REnvironment
Returns information about the version of R that is used.
getViterbiPath(int, int, Sequence, SamplingHigherOrderHMM.ViterbiComputation) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
This method returns a viterbi path that is the optimum for the choosen ViterbiComputation method
getViterbiPathFor(int, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
getViterbiPathFor(Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
getViterbiPathFor(int, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getViterbiPathFor(int, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
getViterbiPathsFor(DataSet) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This method returns the viterbi paths and scores for all sequences of the data set data
.
getWeight() - Method in class de.jstacs.algorithms.graphs.Edge
Returns the weight of the edge.
getWeight(double[], int) - Static method in class de.jstacs.classifiers.performanceMeasures.AbstractPerformanceMeasure
Returns the weight at index
in weight
or 1 if weight
is null
.
getWeight(int) - Method in class de.jstacs.data.DataSet.WeightedDataSetFactory
Returns the weight for the
Sequence
with index
index
.
getWeight() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloNode
This method return the weight (length, rate ...) for the incoming edge
getWeight() - Method in class de.jstacs.utils.ComparableElement
This method returns the weight of the element.
getWeights() - Method in class de.jstacs.data.DataSet.WeightedDataSetFactory
Returns a copy of the weights for the
DataSet
.
getWeights() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method returns a deep copy of the weights for each component.
getWidth(int, double[][]) - Static method in class de.jstacs.utils.SeqLogoPlotter
Returns the automatically chosen width for a given height and position weight matrix.
getWidth(int, int) - Static method in class de.jstacs.utils.SeqLogoPlotter
Returns the width of a sequence logo of the given height for a PWM with the given number of columns.
getWriter() - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor.Protocol
getXmlTag() - Method in class de.jstacs.algorithms.optimization.termination.AbsoluteValueCondition
Deprecated.
getXmlTag() - Method in class de.jstacs.algorithms.optimization.termination.AbstractTerminationCondition
getXmlTag() - Method in class de.jstacs.algorithms.optimization.termination.CombinedCondition
getXmlTag() - Method in class de.jstacs.algorithms.optimization.termination.IterationCondition
getXmlTag() - Method in class de.jstacs.algorithms.optimization.termination.MultipleIterationsCondition
getXmlTag() - Method in class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition
getXmlTag() - Method in class de.jstacs.algorithms.optimization.termination.SmallGradientConditon
getXmlTag() - Method in class de.jstacs.algorithms.optimization.termination.SmallStepCondition
getXmlTag() - Method in class de.jstacs.algorithms.optimization.termination.TimeCondition
getXMLTag() - Method in class de.jstacs.AnnotatedEntity
This method returns a tag used as outer tag of the XML description.
getXMLTag() - Method in class de.jstacs.classifiers.AbstractClassifier
Returns the
String
that is used as tag for the XML representation
of the classifier.
getXMLTag() - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier.DoubleTableResult
getXMLTag() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
getXMLTag() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.msp.MSPClassifier
getXMLTag() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifier
getXMLTag() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
getXMLTag() - Method in class de.jstacs.classifiers.MappingClassifier
getXMLTag() - Method in class de.jstacs.classifiers.trainSMBased.TrainSMBasedClassifier
getXMLTag() - Method in class de.jstacs.parameters.FileParameter
getXMLTag() - Method in class de.jstacs.parameters.MultiSelectionParameter
getXMLTag() - Method in class de.jstacs.parameters.ParameterSetContainer
getXMLTag() - Method in class de.jstacs.parameters.RangeParameter
getXMLTag() - Method in class de.jstacs.parameters.SelectionParameter
getXMLTag() - Method in class de.jstacs.parameters.SimpleParameter
getXMLTag() - Method in class de.jstacs.results.CategoricalResult
getXMLTag() - Method in class de.jstacs.results.DataSetResult
getXMLTag() - Method in class de.jstacs.results.ImageResult
getXMLTag() - Method in class de.jstacs.results.ListResult
getXMLTag() - Method in class de.jstacs.results.NumericalResult
getXMLTag() - Method in class de.jstacs.results.PlotGeneratorResult
getXMLTag() - Method in class de.jstacs.results.StorableResult
getXMLTag() - Method in class de.jstacs.results.TextResult
getXMLTag() - Method in class de.jstacs.sampling.AbstractBurnInTest
getXMLTag() - Method in class de.jstacs.sampling.VarianceRatioBurnInTest
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTExplainingAwayResidual
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures.BTMutualInformation
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.InhomogeneousMarkov
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Returns the XML-tag for storing this measure
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMExplainingAwayResidual
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures.PMMMutualInformation
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
This method returns the XML tag of the instance that is used to build a
XML representation.
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
Returns the XML tag that is used for the class to en- or decode.
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousMM
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM.HomCondProb
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.BayesianNetworkTrainSM
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGTrainSM
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSMEManager
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhCondProb
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMConstraint
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
Returns the tag for the XML representation.
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
The method returns the XML tag used during saving and loading the transition.
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.BasicPluginTransitionElement
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.DistanceBasedScaledTransitionElement
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ScaledTransitionElement
getXMLTag() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
getXMLTag() - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor.FileResult
getXMLTag() - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor.LinkedImageResult
gibbsSampling(int, int, double, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
This method implements a sampling step in the sampling procedure
GibbsSamplingModel - Interface in de.jstacs.sampling
gibbsSamplingStep(int, int, boolean, DataSet, double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
This method implements the next step(s) in the sampling procedure
GIS - Static variable in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMTools
This constant can be used to specify that the model should use the iterative scaling for
training.
goldenRatio(OneDimensionalFunction, double, double, double, double, double) - Static method in class de.jstacs.algorithms.optimization.Optimizer
Approximates a minimum (not necessary the global) in the interval
[lower,upper]
.
goldenRatio(OneDimensionalFunction, double, double, double) - Static method in class de.jstacs.algorithms.optimization.Optimizer
Approximates a minimum (not necessary the global) in the interval
[lower,upper]
.
grad - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
The array for storing the gradients for
each parameter
gradient - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
Help array for the gradient
graphics - Variable in class de.jstacs.utils.graphics.EPSAdaptor
The EPS document
graphics - Variable in class de.jstacs.utils.graphics.RasterizedAdaptor
The graphics object used for plotting
graphics - Variable in class de.jstacs.utils.graphics.SVGAdaptor
The internal graphics object
GraphicsAdaptor - Class in de.jstacs.utils.graphics
Generic class for different adaptors for plotting graphics to a file
using different graphics formats.
GraphicsAdaptor() - Constructor for class de.jstacs.utils.graphics.GraphicsAdaptor
GraphicsAdaptorFactory - Class in de.jstacs.utils.graphics
GraphicsAdaptorFactory() - Constructor for class de.jstacs.utils.graphics.GraphicsAdaptorFactory
GraphicsAdaptorFactory.OutputFormat - Enum in de.jstacs.utils.graphics
The allowed output formats
GT - Static variable in interface de.jstacs.parameters.validation.Constraint
The condition is greater than
GUIProgressUpdater - Class in de.jstacs.utils
GUIProgressUpdater(boolean) - Constructor for class de.jstacs.utils.GUIProgressUpdater