public final class MarkovRandomFieldDiffSM extends AbstractDifferentiableStatisticalModel implements Mutable, SamplingDifferentiableStatisticalModel
alphabets, length, r
UNKNOWN
Constructor and Description |
---|
MarkovRandomFieldDiffSM(AlphabetContainer alphabets,
int length,
double ess,
String constr)
This is the main constructor that creates an instance of a
MarkovRandomFieldDiffSM . |
MarkovRandomFieldDiffSM(AlphabetContainer alphabets,
int length,
String constr)
This constructor creates an instance of a
MarkovRandomFieldDiffSM with
equivalent sample size (ess) 0. |
MarkovRandomFieldDiffSM(StringBuffer source)
This is the constructor for the interface
Storable . |
Modifier and Type | Method and Description |
---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of
DifferentiableStatisticalModel.getLogPriorTerm() for each
parameter of this model. |
MarkovRandomFieldDiffSM |
clone()
Creates a clone (deep copy) of the current
DifferentiableSequenceScore
instance. |
DataSet |
emitDataSet(int numberOfSequences,
int... seqLength)
This method returns a
DataSet object containing artificial
sequence(s). |
protected void |
fromXML(StringBuffer representation)
This method is called in the constructor for the
Storable
interface to create a scoring function from a StringBuffer . |
double[] |
getCurrentParameterValues()
Returns a
double array of dimension
DifferentiableSequenceScore.getNumberOfParameters() containing the current parameter values. |
double |
getESS()
Returns the equivalent sample size (ess) of this model, i.e.
|
String |
getInstanceName()
Should return a short instance name such as iMM(0), BN(2), ...
|
double |
getLogNormalizationConstant()
Returns the logarithm of the sum of the scores over all sequences of the event space.
|
double |
getLogPartialNormalizationConstant(int parameterIndex)
Returns the logarithm of the partial normalization constant for the parameter with index
parameterIndex . |
double |
getLogPriorTerm()
This method computes a value that is proportional to
|
double |
getLogScoreAndPartialDerivation(Sequence seq,
int start,
IntList indices,
DoubleList partialDer)
|
double |
getLogScoreFor(Sequence seq,
int start)
|
int |
getNumberOfParameters()
Returns the number of parameters in this
DifferentiableSequenceScore . |
int[][] |
getSamplingGroups(int parameterOffset)
Returns groups of indexes of parameters that shall be drawn
together in a sampling procedure
|
int |
getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
Returns the size of the event space of the random variables that are
affected by parameter no.
|
void |
initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
This method creates the underlying structure of the
DifferentiableSequenceScore . |
void |
initializeFunctionRandomly(boolean freeParams)
This method initializes the
DifferentiableSequenceScore randomly. |
boolean |
isInitialized()
This method can be used to determine whether the instance is initialized.
|
boolean |
modify(int offsetLeft,
int offsetRight)
Manually modifies the model.
|
void |
setParameters(double[] params,
int start)
This method sets the internal parameters to the values of
params between start and
start + |
String |
toString(NumberFormat nf)
This method returns a
String representation of the instance. |
StringBuffer |
toXML()
This method returns an XML representation as
StringBuffer of an
instance of the implementing class. |
getInitialClassParam, getLogProbFor, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, getMaximalMarkovOrder, isNormalized, isNormalized
getAlphabetContainer, getCharacteristics, getLength, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getLogScoreFor, getLogScoreFor, getNumberOfRecommendedStarts, getNumberOfStarts, getNumericalCharacteristics, toString
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
isNormalized
getInitialClassParam, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getNumberOfRecommendedStarts
getLogProbFor, getLogProbFor, getLogProbFor, getMaximalMarkovOrder
getAlphabetContainer, getCharacteristics, getLength, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getNumericalCharacteristics
public MarkovRandomFieldDiffSM(AlphabetContainer alphabets, int length, String constr)
MarkovRandomFieldDiffSM
with
equivalent sample size (ess) 0.alphabets
- the AlphabetContainer
length
- the length of the sequences and accordingly the modelconstr
- the constraints that are used for the model, see
ConstraintManager.extract(int, String)
MarkovRandomFieldDiffSM(AlphabetContainer, int,
double, String)
public MarkovRandomFieldDiffSM(AlphabetContainer alphabets, int length, double ess, String constr)
MarkovRandomFieldDiffSM
.alphabets
- the AlphabetContainer
length
- the length of the sequences and accordingly the modeless
- the equivalent sample size (ess)constr
- the constraints that are used for the model, see
ConstraintManager.extract(int, String)
public MarkovRandomFieldDiffSM(StringBuffer source) throws NonParsableException
Storable
.
Creates a new MarkovRandomFieldDiffSM
out of a StringBuffer
as
returned by toXML()
.source
- the XML representation as StringBuffer
NonParsableException
- if the XML representation could not be parsedprotected void fromXML(StringBuffer representation) throws NonParsableException
AbstractDifferentiableSequenceScore
Storable
interface to create a scoring function from a StringBuffer
.fromXML
in class AbstractDifferentiableSequenceScore
representation
- the XML representation as StringBuffer
NonParsableException
- if the StringBuffer
could not be parsedAbstractDifferentiableSequenceScore.AbstractDifferentiableSequenceScore(StringBuffer)
public MarkovRandomFieldDiffSM clone() throws CloneNotSupportedException
DifferentiableSequenceScore
DifferentiableSequenceScore
instance.clone
in interface DifferentiableSequenceScore
clone
in interface SequenceScore
clone
in class AbstractDifferentiableStatisticalModel
DifferentiableSequenceScore
CloneNotSupportedException
- if something went wrong while cloning the
DifferentiableSequenceScore
public double getLogScoreFor(Sequence seq, int start)
SequenceScore
getLogScoreFor
in interface SequenceScore
seq
- the Sequence
start
- the start position in the Sequence
Sequence
public double getLogScoreAndPartialDerivation(Sequence seq, int start, IntList indices, DoubleList partialDer)
DifferentiableSequenceScore
Sequence
beginning at
position start
in the Sequence
and fills lists with
the indices and the partial derivations.getLogScoreAndPartialDerivation
in interface DifferentiableSequenceScore
seq
- the Sequence
start
- the start position in the Sequence
indices
- an IntList
of indices, after method invocation the
list should contain the indices i where
partialDer
- a DoubleList
of partial derivations, after method
invocation the list should contain the corresponding
Sequence
public int getNumberOfParameters()
DifferentiableSequenceScore
DifferentiableSequenceScore
. If the
number of parameters is not known yet, the method returns
DifferentiableSequenceScore.UNKNOWN
.getNumberOfParameters
in interface DifferentiableSequenceScore
DifferentiableSequenceScore
DifferentiableSequenceScore.UNKNOWN
public String getInstanceName()
SequenceScore
getInstanceName
in interface SequenceScore
public void setParameters(double[] params, int start)
DifferentiableSequenceScore
params
between start
and
start + DifferentiableSequenceScore.getNumberOfParameters()
- 1
setParameters
in interface DifferentiableSequenceScore
params
- the new parametersstart
- the start index in params
public String toString(NumberFormat nf)
SequenceScore
String
representation of the instance.toString
in interface SequenceScore
nf
- the NumberFormat
for the String
representation of parameters or probabilitiesString
representation of the instancepublic StringBuffer toXML()
Storable
StringBuffer
of an
instance of the implementing class.public void initializeFunction(int index, boolean freeParams, DataSet[] data, double[][] weights) throws Exception
DifferentiableSequenceScore
DifferentiableSequenceScore
.initializeFunction
in interface DifferentiableSequenceScore
index
- the index of the class the DifferentiableSequenceScore
modelsfreeParams
- indicates whether the (reduced) parameterization is useddata
- the data setsweights
- the weights of the sequences in the data setsException
- if something went wrongpublic void initializeFunctionRandomly(boolean freeParams) throws Exception
DifferentiableSequenceScore
DifferentiableSequenceScore
randomly. It has to
create the underlying structure of the DifferentiableSequenceScore
.initializeFunctionRandomly
in interface DifferentiableSequenceScore
freeParams
- indicates whether the (reduced) parameterization is usedException
- if something went wrongpublic double getLogNormalizationConstant()
DifferentiableStatisticalModel
getLogNormalizationConstant
in interface DifferentiableStatisticalModel
public double getLogPartialNormalizationConstant(int parameterIndex) throws Exception
DifferentiableStatisticalModel
parameterIndex
. This is the logarithm of the partial derivation of the
normalization constant for the parameter with index
parameterIndex
,
getLogPartialNormalizationConstant
in interface DifferentiableStatisticalModel
parameterIndex
- the index of the parameterException
- if something went wrong with the normalizationDifferentiableStatisticalModel.getLogNormalizationConstant()
public double getESS()
DifferentiableStatisticalModel
getESS
in interface DifferentiableStatisticalModel
public int getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
DifferentiableStatisticalModel
index
, i.e. the product of the
sizes of the alphabets at the position of each random variable affected
by parameter index
. For DNA alphabets this corresponds to 4
for a PWM, 16 for a WAM except position 0, ...getSizeOfEventSpaceForRandomVariablesOfParameter
in interface DifferentiableStatisticalModel
index
- the index of the parameterpublic double getLogPriorTerm()
DifferentiableStatisticalModel
DifferentiableStatisticalModel.getESS()
* DifferentiableStatisticalModel.getLogNormalizationConstant()
+ Math.log( prior )
prior
is the prior for the parameters of this model.getLogPriorTerm
in interface DifferentiableStatisticalModel
getLogPriorTerm
in interface StatisticalModel
DifferentiableStatisticalModel.getESS()
* DifferentiableStatisticalModel.getLogNormalizationConstant()
+ Math.log( prior ).
DifferentiableStatisticalModel.getESS()
,
DifferentiableStatisticalModel.getLogNormalizationConstant()
public void addGradientOfLogPriorTerm(double[] grad, int start)
DifferentiableStatisticalModel
DifferentiableStatisticalModel.getLogPriorTerm()
for each
parameter of this model. The results are added to the array
grad
beginning at index start
.addGradientOfLogPriorTerm
in interface DifferentiableStatisticalModel
grad
- the array of gradientsstart
- the start index in the grad
array, where the
partial derivations for the parameters of this models shall be
enteredDifferentiableStatisticalModel.getLogPriorTerm()
public double[] getCurrentParameterValues()
DifferentiableSequenceScore
double
array of dimension
DifferentiableSequenceScore.getNumberOfParameters()
containing the current parameter values.
If one likes to use these parameters to start an optimization it is
highly recommended to invoke
DifferentiableSequenceScore.initializeFunction(int, boolean, DataSet[], double[][])
before.
After an optimization this method can be used to get the current
parameter values.getCurrentParameterValues
in interface DifferentiableSequenceScore
public boolean isInitialized()
SequenceScore
SequenceScore.getLogScoreFor(Sequence)
.isInitialized
in interface SequenceScore
true
if the instance is initialized, false
otherwisepublic boolean modify(int offsetLeft, int offsetRight)
Mutable
offsetLeft
and offsetRight
define how many positions the left or
right border positions shall be moved. Negative numbers indicate moves to
the left while positive numbers correspond to moves to the right.public int[][] getSamplingGroups(int parameterOffset)
SamplingDifferentiableStatisticalModel
getSamplingGroups
in interface SamplingDifferentiableStatisticalModel
parameterOffset
- a global offset on the parameter indexesparameterOffset
.public DataSet emitDataSet(int numberOfSequences, int... seqLength) throws NotTrainedException, Exception
StatisticalModel
DataSet
object containing artificial
sequence(s).
emitDataSet( int n, int l )
should return a data set with
n
sequences of length l
.
emitDataSet( int n, int[] l )
should return a data set with
n
sequences which have a sequence length corresponding to
the entry in the given array l
.
emitDataSet( int n )
and
emitDataSet( int n, null )
should return a data set with
n
sequences of length of the model (
SequenceScore.getLength()
).
Exception
.emitDataSet
in interface StatisticalModel
emitDataSet
in class AbstractDifferentiableStatisticalModel
numberOfSequences
- the number of sequences that should be contained in the
returned data setseqLength
- the length of the sequences for a homogeneous model; for an
inhomogeneous model this parameter should be null
or an array of size 0.DataSet
containing the artificial sequence(s)NotTrainedException
- if the model is not trained yetException
- if the emission did not succeedDataSet