- NA - Static variable in class de.jstacs.results.StorableResult
-
- name - Variable in class de.jstacs.AnnotatedEntity
-
The name of the entity.
- NAME - Static variable in class de.jstacs.classifiers.performanceMeasures.PRCurve
-
- NAME - Static variable in class de.jstacs.classifiers.performanceMeasures.ROCCurve
-
- name - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
-
The names of the states.
- name - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleState
-
The name of the state.
- nameTemplate - Variable in class de.jstacs.parameters.ExpandableParameterSet
-
- NegativeDifferentiableFunction - Class in de.jstacs.algorithms.optimization
-
- NegativeDifferentiableFunction(DifferentiableFunction) - Constructor for class de.jstacs.algorithms.optimization.NegativeDifferentiableFunction
-
- NegativeFunction - Class in de.jstacs.algorithms.optimization
-
The negative function
-f for a given
Function
f
.
- NegativeFunction(Function) - Constructor for class de.jstacs.algorithms.optimization.NegativeFunction
-
Creates the
Function
f
for which
-f
should be calculated.
- NegativeOneDimensionalFunction - Class in de.jstacs.algorithms.optimization
-
- NegativeOneDimensionalFunction(OneDimensionalFunction) - Constructor for class de.jstacs.algorithms.optimization.NegativeOneDimensionalFunction
-
- NewickParser - Class in de.jstacs.sequenceScores.statisticalModels.trainable.phylo.parser
-
This class implements a simple newick parser and allows the construction of a
PhyloTree
- NewickParser(BufferedReader) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.parser.NewickParser
-
This constructor initialize the newick parser
- next() - Method in class de.jstacs.data.DataSet.ElementEnumerator
-
- next() - Method in class de.jstacs.parameters.MultiSelectionParameter
-
- next() - Method in interface de.jstacs.parameters.RangeIterator
-
Switches to the next value in the collection of values in the specified
range.
- next() - Method in class de.jstacs.parameters.RangeParameter
-
- next() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.DurationDiffSM
-
- next() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.PositionDiffSM
-
This method steps to the next reasonable outcome if possible.
- next() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.CombinationIterator
-
Steps to the next combination.
- next() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.SequenceIterator
-
Changes the internal sequence representation to the next sequence.
- next(int) - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
- nextBeta(double, double) - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates a random number from Beta(alpha,beta) (E(X)=a/(a+b) ;
Var(X)=ab/[(a+b+1)(a+b)^2])
- nextBoolean() - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates a random boolean variable
- nextBoolean(double) - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates true with probability p
- nextChiSq() - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates a random number from ChiSq(1) (E(X)=1 ; Var(X)=2)
- nextChiSq(int) - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates a random number from ChiSq(df) (E(X)=df ; Var(X)=2*df)
- nextChiSq(int, double) - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates a random number from shifted-ChiSq(df) (E(X)=df+lambda ;
Var(X)=2*df)
- nextElement() - Method in class de.jstacs.data.DataSet.ElementEnumerator
-
- nextElement() - Method in class de.jstacs.data.DataSetKMerEnumerator
-
- nextElement() - Method in class de.jstacs.data.DiscreteSequenceEnumerator
-
- nextElement() - Method in class de.jstacs.data.SequenceEnumeration
-
- nextElement() - Method in class de.jstacs.io.InfixStringExtractor
-
- nextElement() - Method in class de.jstacs.io.LimitedStringExtractor
-
- nextElement() - Method in class de.jstacs.io.SimpleStringExtractor
-
- nextElement() - Method in class de.jstacs.io.SparseStringExtractor
-
- nextElement() - Method in class de.jstacs.io.StringExtractor
-
- nextElement() - Method in class de.jstacs.io.SymbolExtractor
-
- nextExp() - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates a random number from Exp(1) (E(X)=1 ; Var(X)=1)
- nextExp(double) - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates a random number from Exp(beta) (E(X)=beta ; Var(X)=beta^2)
- nextExp(double, double) - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates a random number from shifted-Exp(beta) (E(X)=beta+lambda ;
Var(X)=beta^2)
- nextGamma() - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates a random number from Gamma(1,1) (E(X)=1 ; Var(X)=1)
- nextGamma(double, double) - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates a random number from Gamma(alpha,beta) (E(X)=alpha*beta ;
Var(X)=alpha*beta^2)
- nextGamma(double, double, double) - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates a random number from shifted-Gamma(alpha,beta)
(E(X)=alpha*beta+lambda ; Var(X)=alpha*beta^2)
- nextGammaLog(double, double) - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
- nextGaussian() - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates a random number from N(0,1) (E(X)=0 ; Var(X)=1)
- nextGaussian(double, double) - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates a random number from N(m,s2) (E(X)=m ; Var(X)=s2)
- nextInt() - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates an integer between 0 and 2^32
- nextInt(int) - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates an integer between 0 and n-1 (inclusive)
- nextPoisson(double) - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates a random number from Poisson(lambda) (E(X)=lambda ;
Var(X)=lambda)
- nextPoisson() - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates a random number from Poisson(1) (E(X)=1 ; Var(X)=1)
- nextSequence() - Method in class de.jstacs.data.bioJava.SimpleSequenceIterator
-
- nextUniform() - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates a random number from U(0,1) (E(X)=1/2 ; Var(X)=1/12)
- nextUniform(double, double) - Method in class de.jstacs.utils.random.RandomNumberGenerator
-
generates a random number from U(a,b) (E(X)=(b-a)/2 ; Var(X)=(b-a)^2/12)
- NiceScale - Class in de.jstacs.utils
-
Class for creating nive tick marks on axes given a minimum and maximum value.
- NiceScale(double, double) - Constructor for class de.jstacs.utils.NiceScale
-
Creates a
NiceScale
object for the given minimum and maximum
- NO_SMOOTHING - Static variable in enum de.jstacs.data.DinucleotideProperty
-
- NonParsableException - Exception in de.jstacs.io
-
- NonParsableException() - Constructor for exception de.jstacs.io.NonParsableException
-
- NonParsableException(String) - Constructor for exception de.jstacs.io.NonParsableException
-
- NoRevertHistory - Class in de.jstacs.motifDiscovery.history
-
This class implements a history that allows operations, that are not a
priorily forbidden and do not create a configuration that has already be
considered.
- NoRevertHistory() - Constructor for class de.jstacs.motifDiscovery.history.NoRevertHistory
-
This constructor creates an instance that allows to shift shrink and expand the motif.
- NoRevertHistory(boolean, boolean, boolean) - Constructor for class de.jstacs.motifDiscovery.history.NoRevertHistory
-
This constructor creates an instance with user specified allowed operations.
- NoRevertHistory(StringBuffer) - Constructor for class de.jstacs.motifDiscovery.history.NoRevertHistory
-
This is the constructor for the interface
Storable
.
- norm - Variable in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractOptimizableFunction
-
Indicates whether a normalization should be done or not.
- norm - Variable in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
-
This double
contains the normalization constant of the
instance.
- Normalisation - Class in de.jstacs.utils
-
This class can be used for normalisation of any double
array or
a part of a double
array.
- Normalisation() - Constructor for class de.jstacs.utils.Normalisation
-
- normalisation(double[], double) - Static method in class de.jstacs.utils.Normalisation
-
The method does a normalisation on d
using the value
v
for normalisation.
- normalisation(double[], double, double[], int) - Static method in class de.jstacs.utils.Normalisation
-
The method does a normalisation on d
writing the result to
dest
starting at position start
while
d
remains unchanged.
- normalisation(double[], double, int, int) - Static method in class de.jstacs.utils.Normalisation
-
The method does a sum normalisation on d
between start index
start
and end index end
using the value
v
for the normalisation.
- normalize(double[]) - Static method in class de.jstacs.utils.PFMComparator
-
This method enables the user to normalize a array containing counts.
- NormalizedDiffSM - Class in de.jstacs.sequenceScores.statisticalModels.differentiable
-
- NormalizedDiffSM(DifferentiableStatisticalModel, int) - Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
-
Creates a new instance using a given DifferentiableStatisticalModel.
- NormalizedDiffSM(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
-
- NormalizedEuclideanDistance() - Constructor for class de.jstacs.utils.PFMComparator.NormalizedEuclideanDistance
-
- normalizeParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
-
Normalizes the parameter values to the corresponding log-probabilities.
- normalizeParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.MarkovModelDiffSM
-
Normalizes all parameters to log-probabilities.
- normalizePlugInParameters() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
-
Starts the normalization of the plug-in parameters to the logarithm of the
MAP-estimates.
- NOT_TRAINED_VALUE - Static variable in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
-
- NotInstantiableException(String) - Constructor for exception de.jstacs.io.ParameterSetParser.NotInstantiableException
-
- NotTrainedException - Exception in de.jstacs
-
- NotTrainedException() - Constructor for exception de.jstacs.NotTrainedException
-
- NotTrainedException(String) - Constructor for exception de.jstacs.NotTrainedException
-
- nsf - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.DifferentiableStatisticalModelWrapperTrainSM
-
- NullProgressUpdater - Class in de.jstacs.utils
-
This class implements a
ProgressUpdater
doing nothing but forces a
crossvalidation that is used with an instance of this class to continue to
its end.
- NullSequenceAnnotationParser - Class in de.jstacs.data.sequences.annotation
-
- numberOfParameters - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
-
The number of parameters of this HMM
- numberOfSummands - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
-
Helper variable = only for internal use.
- NumberValidator<E extends Comparable<? extends Number>> - Class in de.jstacs.parameters.validation
-
- NumberValidator(E, E) - Constructor for class de.jstacs.parameters.validation.NumberValidator
-
- NumberValidator(StringBuffer) - Constructor for class de.jstacs.parameters.validation.NumberValidator
-
The standard constructor for the interface
Storable
.
- NumericalDifferentiableFunction - Class in de.jstacs.algorithms.optimization
-
This class is the framework for any numerical differentiable function

.
- NumericalDifferentiableFunction(Function, double) - Constructor for class de.jstacs.algorithms.optimization.NumericalDifferentiableFunction
-
- NumericalHMMTrainingParameterSet - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training
-
- NumericalHMMTrainingParameterSet() - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.NumericalHMMTrainingParameterSet
-
This is the empty constructor that can be used to fill the parameters after creation.
- NumericalHMMTrainingParameterSet(int, AbstractTerminationCondition, int, byte, double, double) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.NumericalHMMTrainingParameterSet
-
This constructor can be used to create an instance with specified parameters.
- NumericalHMMTrainingParameterSet(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.NumericalHMMTrainingParameterSet
-
The standard constructor for the interface
Storable
.
- NumericalPerformanceMeasure - Interface in de.jstacs.classifiers.performanceMeasures
-
This interface indicates that a Performance measure returns numerical results.
- NumericalPerformanceMeasureParameterSet - Class in de.jstacs.classifiers.performanceMeasures
-
- NumericalPerformanceMeasureParameterSet(StringBuffer) - Constructor for class de.jstacs.classifiers.performanceMeasures.NumericalPerformanceMeasureParameterSet
-
The standard constructor for the interface
Storable
.
- NumericalPerformanceMeasureParameterSet(int) - Constructor for class de.jstacs.classifiers.performanceMeasures.NumericalPerformanceMeasureParameterSet
-
- NumericalPerformanceMeasureParameterSet(NumericalPerformanceMeasure...) - Constructor for class de.jstacs.classifiers.performanceMeasures.NumericalPerformanceMeasureParameterSet
-
- NumericalResult - Class in de.jstacs.results
-
Class for numerical
Result
values.
- NumericalResult(StringBuffer) - Constructor for class de.jstacs.results.NumericalResult
-
The standard constructor for the interface
Storable
.
- NumericalResult(DataType, String, String, Comparable) - Constructor for class de.jstacs.results.NumericalResult
-
- NumericalResult(String, String, double) - Constructor for class de.jstacs.results.NumericalResult
-
The simplified constructor for the primitive type double
.
- NumericalResult(String, String, int) - Constructor for class de.jstacs.results.NumericalResult
-
The simplified constructor for the primitive type int
.
- NumericalResult(String, String, Integer) - Constructor for class de.jstacs.results.NumericalResult
-
The simplified constructor for the type
Integer
.
- NumericalResult(String, String, long) - Constructor for class de.jstacs.results.NumericalResult
-
The simplified constructor for the primitive type long
.
- NumericalResultSet - Class in de.jstacs.results
-
Class for a set of numerical result values, which are all of the type
NumericalResult
.
- NumericalResultSet(NumericalResult) - Constructor for class de.jstacs.results.NumericalResultSet
-
- NumericalResultSet(NumericalResult[]...) - Constructor for class de.jstacs.results.NumericalResultSet
-
- NumericalResultSet(LinkedList<? extends NumericalResult>) - Constructor for class de.jstacs.results.NumericalResultSet
-
- NumericalResultSet(StringBuffer) - Constructor for class de.jstacs.results.NumericalResultSet
-
The standard constructor for the interface
Storable
.
- numFreePars - Variable in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
-
The number of free parameters.
- nums - Variable in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
-
Used internally.