public final class NormalizedDiffSM extends AbstractDifferentiableStatisticalModel implements Mutable
DifferentiableStatisticalModel
to a normalized DifferentiableStatisticalModel
.
However, the class allows to use only DifferentiableStatisticalModel
that do not implement VariableLengthDiffSM
.
This class should be used only in cases when it is not possible to avoid its usage.alphabets, length, r
UNKNOWN
Constructor and Description |
---|
NormalizedDiffSM(DifferentiableStatisticalModel nsf,
int starts)
Creates a new instance using a given DifferentiableStatisticalModel.
|
NormalizedDiffSM(StringBuffer xml)
This is the constructor for
Storable . |
Modifier and Type | Method and Description |
---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of
DifferentiableStatisticalModel.getLogPriorTerm() for each
parameter of this model. |
NormalizedDiffSM |
clone()
Creates a clone (deep copy) of the current
DifferentiableSequenceScore
instance. |
protected void |
fromXML(StringBuffer xml)
This method is called in the constructor for the
Storable
interface to create a scoring function from a StringBuffer . |
double[] |
getCurrentParameterValues()
Returns a
double array of dimension
DifferentiableSequenceScore.getNumberOfParameters() containing the current parameter values. |
double |
getESS()
Returns the equivalent sample size (ess) of this model, i.e.
|
DifferentiableStatisticalModel |
getFunction()
This method returns the internal function.
|
String |
getInstanceName()
Should return a short instance name such as iMM(0), BN(2), ...
|
double |
getLogNormalizationConstant()
Returns the logarithm of the sum of the scores over all sequences of the event space.
|
double |
getLogPartialNormalizationConstant(int parameterIndex)
Returns the logarithm of the partial normalization constant for the parameter with index
parameterIndex . |
double |
getLogPriorTerm()
This method computes a value that is proportional to
|
double |
getLogScoreAndPartialDerivation(Sequence seq,
int start,
IntList indices,
DoubleList partialDer)
|
double |
getLogScoreFor(Sequence seq,
int start)
|
static DifferentiableStatisticalModel |
getNormalizedVersion(DifferentiableStatisticalModel nsf,
int starts)
This method returns a normalized version of a DifferentiableStatisticalModel.
|
int |
getNumberOfParameters()
Returns the number of parameters in this
DifferentiableSequenceScore . |
int |
getNumberOfRecommendedStarts()
This method returns the number of recommended optimization starts.
|
int |
getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
Returns the size of the event space of the random variables that are
affected by parameter no.
|
StrandedLocatedSequenceAnnotationWithLength.Strand |
getStrand(Sequence seq,
int startPos)
This method return the preferred
StrandedLocatedSequenceAnnotationWithLength.Strand for a Sequence beginning at startPos . |
void |
initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
This method creates the underlying structure of the
DifferentiableSequenceScore . |
void |
initializeFunctionRandomly(boolean freeParams)
This method initializes the
DifferentiableSequenceScore randomly. |
void |
initializeHiddenUniformly()
This method initializes the hidden parameters of the internal
DifferentiableStatisticalModel uniformly if it is a AbstractMixtureDiffSM . |
boolean |
isInitialized()
This method can be used to determine whether the instance is initialized.
|
boolean |
isNormalized()
This method indicates whether the implemented score is already normalized
to 1 or not.
|
boolean |
isStrandModel()
This method returns
true if the internal DifferentiableStatisticalModel is a StrandDiffSM otherwise false . |
boolean |
modify(int offsetLeft,
int offsetRight)
Manually modifies the model.
|
void |
setParameters(double[] params,
int start)
This method sets the internal parameters to the values of
params between start and
start + |
String |
toString(NumberFormat nf)
This method returns a
String representation of the instance. |
StringBuffer |
toXML()
This method returns an XML representation as
StringBuffer of an
instance of the implementing class. |
emitDataSet, getInitialClassParam, getLogProbFor, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, getMaximalMarkovOrder, isNormalized
getAlphabetContainer, getCharacteristics, getLength, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getLogScoreFor, getLogScoreFor, getNumberOfStarts, getNumericalCharacteristics, toString
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation
getAlphabetContainer, getCharacteristics, getLength, getLogScoreFor, getLogScoreFor, getNumericalCharacteristics
public NormalizedDiffSM(DifferentiableStatisticalModel nsf, int starts) throws Exception
nsf
- the function to be used internalstarts
- the number of recommended starts (DifferentiableSequenceScore.getNumberOfRecommendedStarts()
)Exception
- is nsf
could not be cloned or some error occurred during computation of some valuespublic NormalizedDiffSM(StringBuffer xml) throws NonParsableException
Storable
.xml
- the xml representationNonParsableException
- if the representation could not be parsed.public static final DifferentiableStatisticalModel getNormalizedVersion(DifferentiableStatisticalModel nsf, int starts) throws Exception
nsf
or an instance of NormalizedDiffSM using nsf
and starts
.nsf
- the DifferentiableStatisticalModel to be normalizedstarts
- the number of recommended starts for a NormalizedDiffSMException
- if nsf
could not be clonedpublic NormalizedDiffSM clone() throws CloneNotSupportedException
DifferentiableSequenceScore
DifferentiableSequenceScore
instance.clone
in interface DifferentiableSequenceScore
clone
in interface SequenceScore
clone
in class AbstractDifferentiableStatisticalModel
DifferentiableSequenceScore
CloneNotSupportedException
- if something went wrong while cloning the
DifferentiableSequenceScore
public int getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
DifferentiableStatisticalModel
index
, i.e. the product of the
sizes of the alphabets at the position of each random variable affected
by parameter index
. For DNA alphabets this corresponds to 4
for a PWM, 16 for a WAM except position 0, ...getSizeOfEventSpaceForRandomVariablesOfParameter
in interface DifferentiableStatisticalModel
index
- the index of the parameterpublic double getLogNormalizationConstant()
DifferentiableStatisticalModel
getLogNormalizationConstant
in interface DifferentiableStatisticalModel
public double getLogPartialNormalizationConstant(int parameterIndex) throws Exception
DifferentiableStatisticalModel
parameterIndex
. This is the logarithm of the partial derivation of the
normalization constant for the parameter with index
parameterIndex
,
getLogPartialNormalizationConstant
in interface DifferentiableStatisticalModel
parameterIndex
- the index of the parameterException
- if something went wrong with the normalizationDifferentiableStatisticalModel.getLogNormalizationConstant()
public double getESS()
DifferentiableStatisticalModel
getESS
in interface DifferentiableStatisticalModel
public double getLogPriorTerm()
DifferentiableStatisticalModel
DifferentiableStatisticalModel.getESS()
* DifferentiableStatisticalModel.getLogNormalizationConstant()
+ Math.log( prior )
prior
is the prior for the parameters of this model.getLogPriorTerm
in interface DifferentiableStatisticalModel
getLogPriorTerm
in interface StatisticalModel
DifferentiableStatisticalModel.getESS()
* DifferentiableStatisticalModel.getLogNormalizationConstant()
+ Math.log( prior ).
DifferentiableStatisticalModel.getESS()
,
DifferentiableStatisticalModel.getLogNormalizationConstant()
public void addGradientOfLogPriorTerm(double[] grad, int start) throws Exception
DifferentiableStatisticalModel
DifferentiableStatisticalModel.getLogPriorTerm()
for each
parameter of this model. The results are added to the array
grad
beginning at index start
.addGradientOfLogPriorTerm
in interface DifferentiableStatisticalModel
grad
- the array of gradientsstart
- the start index in the grad
array, where the
partial derivations for the parameters of this models shall be
enteredException
- if something went wrong with the computing of the gradientsDifferentiableStatisticalModel.getLogPriorTerm()
public void initializeFunction(int index, boolean freeParams, DataSet[] data, double[][] weights) throws Exception
DifferentiableSequenceScore
DifferentiableSequenceScore
.initializeFunction
in interface DifferentiableSequenceScore
index
- the index of the class the DifferentiableSequenceScore
modelsfreeParams
- indicates whether the (reduced) parameterization is useddata
- the data setsweights
- the weights of the sequences in the data setsException
- if something went wrongpublic void initializeFunctionRandomly(boolean freeParams) throws Exception
DifferentiableSequenceScore
DifferentiableSequenceScore
randomly. It has to
create the underlying structure of the DifferentiableSequenceScore
.initializeFunctionRandomly
in interface DifferentiableSequenceScore
freeParams
- indicates whether the (reduced) parameterization is usedException
- if something went wrongprotected void fromXML(StringBuffer xml) throws NonParsableException
AbstractDifferentiableSequenceScore
Storable
interface to create a scoring function from a StringBuffer
.fromXML
in class AbstractDifferentiableSequenceScore
xml
- the XML representation as StringBuffer
NonParsableException
- if the StringBuffer
could not be parsedAbstractDifferentiableSequenceScore.AbstractDifferentiableSequenceScore(StringBuffer)
public String getInstanceName()
SequenceScore
getInstanceName
in interface SequenceScore
public double getLogScoreFor(Sequence seq, int start)
SequenceScore
getLogScoreFor
in interface SequenceScore
seq
- the Sequence
start
- the start position in the Sequence
Sequence
public double getLogScoreAndPartialDerivation(Sequence seq, int start, IntList indices, DoubleList partialDer)
DifferentiableSequenceScore
Sequence
beginning at
position start
in the Sequence
and fills lists with
the indices and the partial derivations.getLogScoreAndPartialDerivation
in interface DifferentiableSequenceScore
seq
- the Sequence
start
- the start position in the Sequence
indices
- an IntList
of indices, after method invocation the
list should contain the indices i where
partialDer
- a DoubleList
of partial derivations, after method
invocation the list should contain the corresponding
Sequence
public int getNumberOfParameters()
DifferentiableSequenceScore
DifferentiableSequenceScore
. If the
number of parameters is not known yet, the method returns
DifferentiableSequenceScore.UNKNOWN
.getNumberOfParameters
in interface DifferentiableSequenceScore
DifferentiableSequenceScore
DifferentiableSequenceScore.UNKNOWN
public double[] getCurrentParameterValues() throws Exception
DifferentiableSequenceScore
double
array of dimension
DifferentiableSequenceScore.getNumberOfParameters()
containing the current parameter values.
If one likes to use these parameters to start an optimization it is
highly recommended to invoke
DifferentiableSequenceScore.initializeFunction(int, boolean, DataSet[], double[][])
before.
After an optimization this method can be used to get the current
parameter values.getCurrentParameterValues
in interface DifferentiableSequenceScore
Exception
- if no parameters exist (yet)public void setParameters(double[] params, int start)
DifferentiableSequenceScore
params
between start
and
start + DifferentiableSequenceScore.getNumberOfParameters()
- 1
setParameters
in interface DifferentiableSequenceScore
params
- the new parametersstart
- the start index in params
public boolean isInitialized()
SequenceScore
SequenceScore.getLogScoreFor(Sequence)
.isInitialized
in interface SequenceScore
true
if the instance is initialized, false
otherwisepublic StringBuffer toXML()
Storable
StringBuffer
of an
instance of the implementing class.public int getNumberOfRecommendedStarts()
DifferentiableSequenceScore
getNumberOfRecommendedStarts
in interface DifferentiableSequenceScore
getNumberOfRecommendedStarts
in class AbstractDifferentiableSequenceScore
public boolean isNormalized()
DifferentiableStatisticalModel
false
.isNormalized
in interface DifferentiableStatisticalModel
isNormalized
in class AbstractDifferentiableStatisticalModel
true
if the implemented score is already normalized
to 1, false
otherwisepublic String toString(NumberFormat nf)
SequenceScore
String
representation of the instance.toString
in interface SequenceScore
nf
- the NumberFormat
for the String
representation of parameters or probabilitiesString
representation of the instancepublic DifferentiableStatisticalModel getFunction() throws CloneNotSupportedException
CloneNotSupportedException
- if the internal function could not be clonedpublic boolean modify(int offsetLeft, int offsetRight)
Mutable
offsetLeft
and offsetRight
define how many positions the left or
right border positions shall be moved. Negative numbers indicate moves to
the left while positive numbers correspond to moves to the right.public boolean isStrandModel()
true
if the internal DifferentiableStatisticalModel
is a StrandDiffSM
otherwise false
.true
if the internal DifferentiableStatisticalModel
is a StrandDiffSM
otherwise false
public StrandedLocatedSequenceAnnotationWithLength.Strand getStrand(Sequence seq, int startPos)
StrandedLocatedSequenceAnnotationWithLength.Strand
for a Sequence
beginning at startPos
.seq
- the sequencestartPos
- the start positionStrandedLocatedSequenceAnnotationWithLength.Strand
public void initializeHiddenUniformly()
DifferentiableStatisticalModel
uniformly if it is a AbstractMixtureDiffSM
.