Sampled_RepeatedHoldOutAssessParameterSet() - Constructor for class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutAssessParameterSet
Sampled_RepeatedHoldOutAssessParameterSet(StringBuffer) - Constructor for class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutAssessParameterSet
The standard constructor for the interface
Storable
.
Sampled_RepeatedHoldOutAssessParameterSet(DataSet.PartitionMethod, int, boolean, int, int, double, boolean) - Constructor for class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutAssessParameterSet
Sampled_RepeatedHoldOutExperiment - Class in de.jstacs.classifiers.assessment
This class is a special
ClassifierAssessment
that partitions the data
of a user-specified reference class (typically the smallest class) and
data sets non-overlapping for all other classes, so that one gets the same
number of sequences (and the same lengths of the sequences) in each train and
test data set.
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[], TrainableStatisticalModel[][], boolean, boolean) - Constructor for class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutExperiment
Sampled_RepeatedHoldOutExperiment(AbstractClassifier...) - Constructor for class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutExperiment
Sampled_RepeatedHoldOutExperiment(boolean, TrainableStatisticalModel[]...) - Constructor for class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutExperiment
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[], boolean, TrainableStatisticalModel[]...) - Constructor for class de.jstacs.classifiers.assessment.Sampled_RepeatedHoldOutExperiment
sampleNSteps(Function, SamplingScoreBasedClassifier.DiffSMSamplingComponent, BurnInTest, int, SamplingScoreBasedClassifier.SamplingScheme) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
Samples a predefined number of steps appended to the current sampling
samplePath(IntList, int, int, Sequence) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
This method samples a valid path for the given sequence seq
using the internal parameters.
SamplingComponent - Interface in de.jstacs.sampling
This interface defines methods that are used during a sampling.
SamplingDifferentiableStatisticalModel - Interface in de.jstacs.sequenceScores.statisticalModels.differentiable
SamplingEmission - Interface in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions
SamplingFromStatistic - Interface in de.jstacs.sampling
This is the interface for sampling based on a sufficient statistic.
SamplingGenDisMixClassifier - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling
A classifier that samples its parameters from a
LogGenDisMixFunction
using the
Metropolis-Hastings algorithm.
SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet, BurnInTest, double[], LogPrior, double[], SamplingDifferentiableStatisticalModel...) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifier
Creates a new
SamplingGenDisMixClassifier
using the external parameters
params
, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, weights
beta
for the three components of the
LogGenDisMixFunction
, i.e., likelihood, conditional likelihood, and prior,
and scoring functions that model the distribution for each of the classes.
SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet, BurnInTest, double[], LogPrior, LearningPrinciple, SamplingDifferentiableStatisticalModel...) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifier
Creates a new
SamplingGenDisMixClassifier
using the external parameters
params
, a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, a learning principle,
and scoring functions that model the distribution for each of the classes.
SamplingGenDisMixClassifier(StringBuffer) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifier
SamplingGenDisMixClassifierParameterSet - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling
SamplingGenDisMixClassifierParameterSet(AlphabetContainer, int, int, SamplingScoreBasedClassifier.SamplingScheme, int, int, boolean, boolean, String, int) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifierParameterSet
SamplingGenDisMixClassifierParameterSet(Class<? extends SamplingScoreBasedClassifier>, AlphabetContainer, int, int, SamplingScoreBasedClassifier.SamplingScheme, int, int, boolean, boolean, String, int) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifierParameterSet
SamplingGenDisMixClassifierParameterSet(AlphabetContainer, int, int, int, int, String, int) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingGenDisMixClassifierParameterSet
SamplingHigherOrderHMM - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models
SamplingHigherOrderHMM(SamplingHMMTrainingParameterSet, String[], int[], boolean[], SamplingEmission[], TransitionElement...) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
This is the main constructor.
SamplingHigherOrderHMM(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingHigherOrderHMM
The standard constructor for the interface
Storable
.
SamplingHigherOrderHMM.ViterbiComputation - Enum in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models
Emumeration of all possible Viterbi-Path methods
SamplingHMMTrainingParameterSet - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training
This class contains the parameters for training training an
AbstractHMM
using a sampling strategy.
SamplingHMMTrainingParameterSet() - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.SamplingHMMTrainingParameterSet
This is the empty constructor that can be used to fill the parameters after creation.
SamplingHMMTrainingParameterSet(int, int, int, AbstractBurnInTestParameterSet) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.SamplingHMMTrainingParameterSet
This is the main constructor creating an already filled parameter set for training an
AbstractHMM
using a sampling strategy.
SamplingHMMTrainingParameterSet(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training.SamplingHMMTrainingParameterSet
The standard constructor for the interface
Storable
.
samplingIndex - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGModelForGibbsSampling
The index of the current sampling.
samplingIndex - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
The index of the current sampling.
samplingIndex - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
The index of the current sampling.
samplingIndex - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
The current index of the sampling.
SamplingPhyloHMM - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models
This class implements an (higher order) HMM that contains multi-dimensional emissions described
by a phylogenetic tree.
SamplingPhyloHMM(SamplingHMMTrainingParameterSet, String[], int[], boolean[], PhyloDiscreteEmission[], TransitionElement...) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingPhyloHMM
This is the main constructor for a hidden markov model with phylogenetic emission(s)
This model can be trained using a metropolis hastings algorithm
SamplingPhyloHMM(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.SamplingPhyloHMM
The standard constructor for the interface
Storable
.
SamplingScoreBasedClassifier - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling
SamplingScoreBasedClassifier(StringBuffer) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
SamplingScoreBasedClassifier(SamplingScoreBasedClassifierParameterSet, BurnInTest, double[], SamplingDifferentiableStatisticalModel...) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
SamplingScoreBasedClassifier.DiffSMSamplingComponent - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling
The
SamplingComponent
that handles storing and loading sampled parameters values
to and from files.
SamplingScoreBasedClassifier.SamplingScheme - Enum in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling
Sampling scheme for sampling the parameters of the scoring functions.
SamplingScoreBasedClassifierParameterSet - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling
SamplingScoreBasedClassifierParameterSet(Class<? extends SamplingScoreBasedClassifier>, AlphabetContainer, int, int, SamplingScoreBasedClassifier.SamplingScheme, int, int, boolean, boolean, String) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
SamplingScoreBasedClassifierParameterSet(Class<? extends SamplingScoreBasedClassifier>, AlphabetContainer, int, int, int, int, String) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
SamplingState - Interface in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states
samplingStopped() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier.DiffSMSamplingComponent
samplingStopped() - Method in interface de.jstacs.sampling.SamplingComponent
samplingStopped() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGModelForGibbsSampling
samplingStopped() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
samplingStopped() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
samplingStopped() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleSamplingState
samplingStopped() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
samplingStopped() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
SamplingTransition - Interface in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions
This interface declares all method used during a sampling.
satisfiesSpecificConstraint(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.Constraint
This method returns the index of the specific constraint that is
fulfilled by the
Sequence
seq
beginning at position
start
.
satisfiesSpecificConstraint(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM.HomCondProb
satisfiesSpecificConstraint(Sequence, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhConstraint
satisfiesSpecificConstraint(SequenceIterator) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMConstraint
Returns the index of the constraint that is satisfied by
sequence
.
save(File) - Method in class de.jstacs.data.DataSet
This method writes the
DataSet
to a file
f
.
save(OutputStream, char, SequenceAnnotationParser) - Method in class de.jstacs.data.DataSet
saveParameters() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier.DiffSMSamplingComponent
Saves the parameter values of all parameter files to
a
StringBuffer
representing these as XML.
ScaledTransitionElement - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements
Scaled transition element for an HMM with scaled transition matrices (SHMM).
ScaledTransitionElement(int[], int[], double[], double, double[], String) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ScaledTransitionElement
Creates an object representing the transition probabilities of a Hidden Markov TrainableStatisticalModel with scaled transition matrices (SHMM) for the given context.
ScaledTransitionElement(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ScaledTransitionElement
The standard constructor for the interface
Storable
.
scalingFactor - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.DistanceBasedScaledTransitionElement
The maximal scaling factor.
scalingFactor - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ScaledTransitionElement
The scaling factors of the individual transition classes.
score - Variable in class de.jstacs.classifiers.differentiableSequenceScoreBased.DiffSSBasedOptimizableFunction
score - Variable in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
The internally used scoring functions.
score - Variable in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
score - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
The type of the score that is evaluated
ScoreClassifier - Class in de.jstacs.classifiers.differentiableSequenceScoreBased
ScoreClassifier(ScoreClassifierParameterSet, double, DifferentiableSequenceScore...) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
ScoreClassifier(StringBuffer) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
The standard constructor for the interface
Storable
.
ScoreClassifierParameterSet - Class in de.jstacs.classifiers.differentiableSequenceScoreBased
ScoreClassifierParameterSet(Class<? extends ScoreClassifier>, boolean, AlphabetContainer.AlphabetContainerType, boolean) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifierParameterSet
ScoreClassifierParameterSet(StringBuffer) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifierParameterSet
The standard constructor for the interface
Storable
.
ScoreClassifierParameterSet(Class<? extends ScoreClassifier>, AlphabetContainer, int, byte, double, double, double, boolean, OptimizableFunction.KindOfParameter) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifierParameterSet
The constructor for a simple, instantiated parameter set.
ScoreClassifierParameterSet(Class<? extends ScoreClassifier>, AlphabetContainer, int, byte, AbstractTerminationCondition, double, double, boolean, OptimizableFunction.KindOfParameter) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifierParameterSet
The constructor for a simple, instantiated parameter set.
scoringFunctions - Variable in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
sd(int, int) - Method in class de.jstacs.utils.DoubleList
This method computes the standard deviation of a part of the list.
sd(int, int, double[]) - Static method in class de.jstacs.utils.ToolBox
This method returns the standard deviation of the elements of an array
between start
and end
.
SectionDefinedAlphabetParameterSet(AlphabetContainer.AlphabetContainerType) - Constructor for class de.jstacs.data.AlphabetContainerParameterSet.SectionDefinedAlphabetParameterSet
SectionDefinedAlphabetParameterSet() - Constructor for class de.jstacs.data.AlphabetContainerParameterSet.SectionDefinedAlphabetParameterSet
SectionDefinedAlphabetParameterSet(Alphabet[], int[]) - Constructor for class de.jstacs.data.AlphabetContainerParameterSet.SectionDefinedAlphabetParameterSet
SectionDefinedAlphabetParameterSet(StringBuffer) - Constructor for class de.jstacs.data.AlphabetContainerParameterSet.SectionDefinedAlphabetParameterSet
The standard constructor for the interface
Storable
.
SelectionParameter - Class in de.jstacs.parameters
Class for a collection parameter, i.e.
SelectionParameter(DataType, String[], Object[], String, String, boolean) - Constructor for class de.jstacs.parameters.SelectionParameter
SelectionParameter(DataType, String[], Object[], String[], String, String, boolean) - Constructor for class de.jstacs.parameters.SelectionParameter
SelectionParameter(String, String, boolean, ParameterSet...) - Constructor for class de.jstacs.parameters.SelectionParameter
SelectionParameter(String, String, boolean, Class<? extends ParameterSet>...) - Constructor for class de.jstacs.parameters.SelectionParameter
SelectionParameter(StringBuffer) - Constructor for class de.jstacs.parameters.SelectionParameter
The standard constructor for the interface
Storable
.
SensitivityForFixedSpecificity - Class in de.jstacs.classifiers.performanceMeasures
This class implements the sensitivity for a fixed specificity.
SensitivityForFixedSpecificity() - Constructor for class de.jstacs.classifiers.performanceMeasures.SensitivityForFixedSpecificity
SensitivityForFixedSpecificity(double) - Constructor for class de.jstacs.classifiers.performanceMeasures.SensitivityForFixedSpecificity
SensitivityForFixedSpecificity(StringBuffer) - Constructor for class de.jstacs.classifiers.performanceMeasures.SensitivityForFixedSpecificity
The standard constructor for the interface
Storable
.
SeparateGaussianLogPrior - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior
SeparateGaussianLogPrior(double[], double[], double[]) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateGaussianLogPrior
Creates a new
SeparateGaussianLogPrior
from a set of base
variances
vars
, a set of class variances
classVars
and a set of class means
classMus
.
SeparateGaussianLogPrior(StringBuffer) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateGaussianLogPrior
The standard constructor for the interface
Storable
.
SeparateLaplaceLogPrior - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior
SeparateLaplaceLogPrior(double[], double[], double[]) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateLaplaceLogPrior
Creates a new
SeparateLaplaceLogPrior
from a set of base
variances
vars
, a set of class variances
classVars
and a set of class means
classMus
.
SeparateLaplaceLogPrior(StringBuffer) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateLaplaceLogPrior
The standard constructor for the interface
Storable
.
SeparateLogPrior - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior
Abstract class for priors that penalize each parameter value independently
and have some variances (and possible means) as hyperparameters.
SeparateLogPrior(double[], double[], double[]) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateLogPrior
Creates a new
SeparateLogPrior
using the class-specific base
variances
vars
, the variances
classVars
and the
means
classMus
for the class parameters.
SeparateLogPrior(StringBuffer) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateLogPrior
The standard constructor for the interface
Storable
.
SeqLogoPlotGenerator(double[][], int) - Constructor for class de.jstacs.utils.SeqLogoPlotter.SeqLogoPlotGenerator
SeqLogoPlotGenerator(StringBuffer) - Constructor for class de.jstacs.utils.SeqLogoPlotter.SeqLogoPlotGenerator
SeqLogoPlotter - Class in de.jstacs.utils
Class with static methods for plotting sequence logos of DNA motifs, i.e., position weight matrices defined over a
DNAAlphabet
.
SeqLogoPlotter() - Constructor for class de.jstacs.utils.SeqLogoPlotter
SeqLogoPlotter.SeqLogoPlotGenerator - Class in de.jstacs.utils
seqs - Variable in class de.jstacs.clustering.distances.SequenceScoreDistance
The De Bruijn sequences
Sequence<T> - Class in de.jstacs.data.sequences
This is the main class for all sequences.
Sequence(AlphabetContainer, SequenceAnnotation[]) - Constructor for class de.jstacs.data.sequences.Sequence
Sequence.CompositeSequence<T> - Class in de.jstacs.data.sequences
Sequence.RecursiveSequence<T> - Class in de.jstacs.data.sequences
This is the main class for subsequences, composite sequences, ...
Sequence.SubSequence<T> - Class in de.jstacs.data.sequences
This class handles subsequences.
SequenceAnnotation - Class in de.jstacs.data.sequences.annotation
Class for a general annotation of a
Sequence
.
SequenceAnnotation(String, String, Result) - Constructor for class de.jstacs.data.sequences.annotation.SequenceAnnotation
SequenceAnnotation(String, String, Result[]...) - Constructor for class de.jstacs.data.sequences.annotation.SequenceAnnotation
SequenceAnnotation(String, String, SequenceAnnotation[], Result...) - Constructor for class de.jstacs.data.sequences.annotation.SequenceAnnotation
SequenceAnnotation(String, String, Collection<? extends Result>) - Constructor for class de.jstacs.data.sequences.annotation.SequenceAnnotation
SequenceAnnotation(StringBuffer) - Constructor for class de.jstacs.data.sequences.annotation.SequenceAnnotation
The standard constructor for the interface
Storable
.
SequenceAnnotationParser - Interface in de.jstacs.data.sequences.annotation
SequenceEnumeration - Class in de.jstacs.data
SequenceEnumeration(Sequence...) - Constructor for class de.jstacs.data.SequenceEnumeration
This constructor creates an instance based on the user-specified
Sequence
s
sequences
.
SequenceEnumeration(Collection<Sequence>) - Constructor for class de.jstacs.data.SequenceEnumeration
This constructor creates an instance based on the user-specified
Collection
of
Sequence
s
sequences
.
SequenceIterator - Class in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous
This class is used to iterate over a discrete sequence.
SequenceIterator(int) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.SequenceIterator
sequenceIteratorToDataSet(SequenceIterator, FeatureFilter, AlphabetContainer) - Static method in class de.jstacs.data.bioJava.BioJavaAdapter
SequenceScore - Interface in de.jstacs.sequenceScores
This interface defines a scoring function that assigns a score to each input sequence.
SequenceScoreDistance - Class in de.jstacs.clustering.distances
Class for a distance metric between
StatisticalModel
s based on the correlation of score
profiles on De Bruijn sequences.
SequenceScoreDistance(DiscreteAlphabet, int, boolean) - Constructor for class de.jstacs.clustering.distances.SequenceScoreDistance
Creates a new distance.
SequenceScoreDistance(CyclicSequenceAdaptor[], boolean) - Constructor for class de.jstacs.clustering.distances.SequenceScoreDistance
Creates a new distance for a given set of sequences.
SequenceScoringParameterSet<T extends InstantiableFromParameterSet> - Class in de.jstacs.parameters
SequenceScoringParameterSet(Class<T>, AlphabetContainer.AlphabetContainerType, boolean) - Constructor for class de.jstacs.parameters.SequenceScoringParameterSet
SequenceScoringParameterSet(Class<T>, AlphabetContainer.AlphabetContainerType, boolean, boolean) - Constructor for class de.jstacs.parameters.SequenceScoringParameterSet
SequenceScoringParameterSet(StringBuffer) - Constructor for class de.jstacs.parameters.SequenceScoringParameterSet
The standard constructor for the interface
Storable
.
SequenceScoringParameterSet(Class<T>, AlphabetContainer, int, boolean) - Constructor for class de.jstacs.parameters.SequenceScoringParameterSet
SequenceScoringParameterSet(Class<T>, AlphabetContainer) - Constructor for class de.jstacs.parameters.SequenceScoringParameterSet
seqWeights - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
The weights of the (sub-)sequence used to train the components (internal models).
set(double[], double[]) - Method in class de.jstacs.algorithms.optimization.OneDimensionalSubFunction
Sets the current values and direction.
set() - Method in class de.jstacs.algorithms.optimization.termination.AbsoluteValueCondition
Deprecated.
set() - Method in class de.jstacs.algorithms.optimization.termination.AbstractTerminationCondition
set() - Method in class de.jstacs.algorithms.optimization.termination.CombinedCondition
set() - Method in class de.jstacs.algorithms.optimization.termination.IterationCondition
set() - Method in class de.jstacs.algorithms.optimization.termination.MultipleIterationsCondition
set() - Method in class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition
set() - Method in class de.jstacs.algorithms.optimization.termination.SmallGradientConditon
set() - Method in class de.jstacs.algorithms.optimization.termination.SmallStepCondition
set() - Method in class de.jstacs.algorithms.optimization.termination.TimeCondition
set(int, T) - Method in class de.jstacs.AnnotatedEntityList
set(boolean, DifferentiableSequenceScore...) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.CompositeLogPrior
set(boolean, DifferentiableSequenceScore...) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.LogPrior
set(boolean, DifferentiableSequenceScore...) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SeparateLogPrior
set(int, Parameter) - Method in class de.jstacs.parameters.ParameterSet.ParameterList
set(int, double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
Sets the (conditional) probability parameters at a specific position and sets the mixture parameters
(largely) to the unconditional PWM component.
set(DGTrainSMParameterSet, boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
Sets the parameters as internal parameters and does some essential
computations.
set(DGTrainSMParameterSet, boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousMM
set(DGTrainSMParameterSet, boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousTrainSM
set(DGTrainSMParameterSet, boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.BayesianNetworkTrainSM
set(DGTrainSMParameterSet, boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGTrainSM
set(DGTrainSMParameterSet, boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSMEManager
set(DGTrainSMParameterSet, boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM
setAlpha(double) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Sets the parameter of the Dirichlet distribution which is used when you
invoke train
to init the gammas.
setBounds(int[]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.SequenceIterator
This method sets the bounds for each position.
setClassWeights(boolean, double...) - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
Sets new class weights.
setClassWeights(boolean, double[], int) - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
Sets new class weights.
setCurrent(double) - Method in class de.jstacs.tools.ProgressUpdater
Sets the value corresponding to the current progress
setCurrentLength(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.CombinationIterator
This method sets the current used number of selected elements.
setCurrentSamplingIndex(int) - Method in class de.jstacs.sampling.AbstractBurnInTest
setCurrentSamplingIndex(int) - Method in interface de.jstacs.sampling.BurnInTest
This method sets the value of the current sampling.
setCurrentSamplingIndex(int) - Method in class de.jstacs.sampling.SimpleBurnInTest
Deprecated.
setDataAndWeights(DataSet[], double[][]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
setDataAndWeights(DataSet[], double[][]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractOptimizableFunction
setDataAndWeights(DataSet[], double[][]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.OneDataSetLogGenDisMixFunction
setDataAndWeights(DataSet[], double[][]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.OptimizableFunction
This method sets the data set and the sequence weights to be used.
setDefault(Object) - Method in class de.jstacs.parameters.AbstractSelectionParameter
setDefault(Object) - Method in class de.jstacs.parameters.EnumParameter
setDefault(Object) - Method in class de.jstacs.parameters.FileParameter
setDefault(Object) - Method in class de.jstacs.parameters.MultiSelectionParameter
setDefault(Object) - Method in class de.jstacs.parameters.Parameter
Sets the default value of the
Parameter
to
defaultValue
.
setDefault(Object) - Method in class de.jstacs.parameters.ParameterSetContainer
setDefault(Object) - Method in class de.jstacs.parameters.RangeParameter
setDefault(Object) - Method in class de.jstacs.parameters.SelectionParameter
setDefault(Object) - Method in class de.jstacs.parameters.SimpleParameter
setDefaultSelected(int[]) - Method in class de.jstacs.parameters.MultiSelectionParameter
setDeleteOnExit(boolean) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
If set to true
(which is the default), the temporary files for storing sampled parameter
values are deleted on exit of the program.
setElements() - Method in class de.jstacs.clustering.hierachical.ClusterTree
Sets the copy references of the leave nodes of this cluster
tree to the elements of its leaves in the current order.
setEss(double) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DGTrainSMParameterSet
This method can be used to set the ess (equivalent sample
size) of this parameter set.
setESS(double) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.StructureLearner
setExpLambda(int, double) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMConstraint
Sets the exponential value of

.
(Additionally it sets the value of

to the logarithmic value of
val
:

.)
setExport(boolean) - Method in class de.jstacs.results.ListResult
setExtendedType(String) - Method in class de.jstacs.parameters.FileParameter
setExtendedType(String) - Method in class de.jstacs.results.TextResult
setExtension(String) - Method in class de.jstacs.parameters.FileParameter.FileRepresentation
setExtension(String) - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor.FileResult
Sets the filename extension
setFilename(String) - Method in class de.jstacs.parameters.FileParameter.FileRepresentation
setFilename(String) - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor.FileResult
Sets the file
setForwardProb(double) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
This method can be used to set the forward strand probability.
setFrameParameterOptimization(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
This method enables the user to choose whether the frame parameters should be optimized or not.
setFreqs(String[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhCondProb
This method is used to restore the values of a Gibbs Sampling run.
setFromStoredParameters(ParameterSet) - Method in class de.jstacs.tools.ToolResult
Sets the values of all parameters in other
to those stored in the internal parameters
that have been supplied upon construction.
setFurtherInformation(StringBuffer) - Method in class de.jstacs.sampling.AbstractBurnInTest
setFurtherInformation(StringBuffer) - Method in class de.jstacs.sampling.VarianceRatioBurnInTest
setFurtherModelInfos(StringBuffer) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
This method replaces the internal model information with those from a
StringBuffer
.
setFurtherModelInfos(StringBuffer) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.HomogeneousMM
setFurtherModelInfos(StringBuffer) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.DAGTrainSM
setFurtherModelInfos(StringBuffer) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.FSDAGModelForGibbsSampling
setFurtherModelInfos(StringBuffer) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEManager
setHelp(String) - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor
Sets the help, i.e., a more detailed description of the program
to help
.
setHelp(File) - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor
Sets the help, i.e., a more detailed description of the program
to the contents of helpfile
.
setHiddenParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
This method sets the hidden parameters of the model.
setId(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloNode
This method set the ID of the current PhyloNode
The ID should be unique in the PhyloTree
setIndeterminate() - Method in class de.jstacs.tools.ProgressUpdater
Sets the progress to indeterminate.
setIndexOfDescendantTransitionElement(int, int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
This method sets the index of the descendant transition element for the child with index index
.
setInitParameters(double[]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
Sets the initial parameters of the sampling to parameters
.
setLambda(int, double) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMConstraint
Sets the value of

.
(Additionally it sets the exponential value of

to the exponential value of
val
:

.
setLast(double) - Method in class de.jstacs.tools.ProgressUpdater
Sets the value that is reached upon completion of the monitored task.
setLastDistance(double) - Method in class de.jstacs.algorithms.optimization.ConstantStartDistance
setLastDistance(double) - Method in class de.jstacs.algorithms.optimization.LimitedMedianStartDistance
setLastDistance(double) - Method in interface de.jstacs.algorithms.optimization.StartDistanceForecaster
Sets the last used distance.
setLength(int) - Method in class de.jstacs.parameters.ArrayParameterSet
setLinear(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
If set to true, the probabilities are mapped to colors by directly, otherwise
a logistic mapping is used to emphasize deviations from the uniform distribution.
setMax(int) - Method in class de.jstacs.utils.DefaultProgressUpdater
setMax(int) - Method in class de.jstacs.utils.GUIProgressUpdater
setMax(int) - Method in class de.jstacs.utils.NullProgressUpdater
setMax(int) - Method in interface de.jstacs.utils.ProgressUpdater
Deprecated.
setMaxTicks(double) - Method in class de.jstacs.utils.NiceScale
Sets maximum number of tick marks we're comfortable with
setMeasure(T) - Method in class de.jstacs.classifiers.performanceMeasures.AbstractPerformanceMeasureParameterSet
setMinMaxPoints(double, double) - Method in class de.jstacs.utils.NiceScale
Sets the minimum and maximum data points for the axis.
setModelType(String) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters.BayesianNetworkTrainSMParameterSet
This method allows a simple change of the model type.
setMotifLength(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.GaussianLikePositionPrior
setMotifLength(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.positionprior.PositionPrior
Sets the length of the current motif.
setName(String) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloNode
This method set a name for the current instance
setNumberOfStarts(int) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifierParameterSet
Sets the number of starts to i
setNumberOfThreads(int) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
This method allows to set the number of threads used while optimization.
setNumberOfThreads(int) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifierParameterSet
This method set the number of threads used during optimization.
setOffset() - Method in class de.jstacs.utils.NullProgressUpdater
setOriginalIndex(int) - Method in class de.jstacs.clustering.hierachical.ClusterTree
Sets the original index (e.g., if elements have been removed from the tree) referring to indexes
in the distance matrix that has been used to build a tree.
setOutputStream(OutputStream) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
setOutputStream(OutputStream) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.DifferentiableStatisticalModelWrapperTrainSM
Sets the OutputStream that is used e.g.
setOutputStream(OutputStream) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM
setOutputStream(OutputStream) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
setOutputStream(OutputStream) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
setParameter(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
setParameter(double[], int) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.DifferentiableEmission
This method sets the internal parameters using the given global parameter array, the global offset of the HMM and the internal offset.
setParameter(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
setParameter(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
setParameter(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
setParameterFor(int, int[][], BNDiffSMParameter) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameterTree
setParameterOffset(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
setParameterOffset(int) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.DifferentiableEmission
This method sets the internal parameter offset and returns the new parameter offset for further use.
setParameterOffset(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
setParameterOffset(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
setParameterOffset(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
setParameterOffset(int) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.DifferentiableTransition
This method sets the internal offset of the parameter index.
setParameterOffset(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.TransitionElement
setParameterOffset(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
setParameterOffset() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
This method allows to set the parameter offset in each internally used
TransitionElement
.
setParameterOptimization(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
This method enables the user to choose whether the parameters should be optimized or not.
setParameterOptimization(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
This method allows the user to specify whether the parameters should be
optimized or not.
setParameters(double[]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
Sets the current parameters for the class weights and in all scoring functions
setParameters(double[], int) - Method in interface de.jstacs.sequenceScores.differentiable.DifferentiableSequenceScore
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.differentiable.logistic.LogisticDiffSS
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.differentiable.MultiDimensionalSequenceWrapperDiffSS
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.differentiable.UniformDiffSS
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.IndependentProductDiffSM
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture.LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MappingDiffSM
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.MarkovRandomFieldDiffSM
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.MixtureDurationDiffSM
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
setParameters(double, double, double) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
this method can be used to set the parameters even if the parameters are not allowed to be optimized.
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.UniformDurationDiffSM
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.NormalizedDiffSM
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.DifferentiableHigherOrderHMM
setParameters(Emission) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.GaussianEmission
setParameters(Emission) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.MultivariateGaussianEmission
setParameters(Emission) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
setParameters(Emission) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.Emission
Set values of parameters of the instance to the value of the parameters of the given instance.
setParameters(Emission) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.MixtureEmission
setParameters(Emission) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
setParameters(Emission) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.UniformEmission
setParameters(BasicHigherOrderTransition.AbstractTransitionElement) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
Set values of parameters of the instance to the value of the parameters of the given instance.
setParameters(Transition) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition
setParameters(double[], int) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.DifferentiableTransition
This method allows to set the parameters of the transition.
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.TransitionElement
This method sets the internal parameters to the values of
params
beginning at index start
.
setParameters(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
setParameters(Transition) - Method in interface de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.Transition
Set values of parameters of the instance to the value of the parameters of the given instance.
setParametersForFunction(int, double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.AbstractMixtureDiffSM
This method allows to set the parameters for specific functions.
setParametersToValue(MEMConstraint[], double) - Static method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMTools
This method is a convenience method that sets the same value for all parameter of the constraints
setParams(double[]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
setParams(int) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
This method sets the parameters for thread index
setParams(int) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.DiffSSBasedOptimizableFunction
setParams(double[]) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.OptimizableFunction
Sets the current values as parameters.
setParams(double[], int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.HigherOrderTransition
This method allows to set the new parameters using a specific offset.
setParamsStarts() - Method in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
setParent(ParameterSet) - Method in class de.jstacs.parameters.Parameter
setParent(Parameter) - Method in class de.jstacs.parameters.ParameterSet
setParser(SequenceAnnotationParser) - Method in class de.jstacs.results.DataSetResult
setPath(String) - Method in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor.FileResult
Sets the path of the directory containing the file to path
setPlugInParameters(int, boolean, DataSet[], double[][]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
Computes and sets the plug-in parameters (MAP estimated parameters) from
data
using weights
.
setPrior(LogPrior) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
This method set a new prior that should be used for optimization.
setRangeable(boolean) - Method in class de.jstacs.parameters.AbstractSelectionParameter
setRangeable(boolean) - Method in class de.jstacs.parameters.SimpleParameter
setRootValue(int, double) - Method in class de.jstacs.algorithms.graphs.tensor.AsymmetricTensor
setRootValue(int, double) - Method in class de.jstacs.algorithms.graphs.tensor.SubTensor
setRootValue(int, double) - Method in class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
setRootValue(int, double) - Method in class de.jstacs.algorithms.graphs.tensor.Tensor
Sets the value val
for the root node child
.
setSeed(long) - Method in class de.jstacs.utils.random.RandomNumberGenerator
setSelected(String, boolean) - Method in class de.jstacs.parameters.MultiSelectionParameter
Sets the selection of the option with key key
to the value
of selected
.
setSelected(int, boolean) - Method in class de.jstacs.parameters.MultiSelectionParameter
Sets the selection of option with no.
setShape(String) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
Sets the graphviz shape of the node that uses this emission to some non-standard value
(standard is "house").
setShiftCorrection(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
Enables or disables the phase shift correction.
setSkiptInit(boolean) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
Sets if the model should be initialized (randomly) before optimization
setStartParamsToConditionalStationaryDistributions() - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
Sets the start parameters of this homogeneous Markov model to
the corresponding stationary distributions of the transition probabilities.
setStatisticForHyperparameters(int[], double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.CyclicMarkovModelDiffSM
setStatisticForHyperparameters(int[], double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMM0DiffSM
setStatisticForHyperparameters(int[], double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.HomogeneousMMDiffSM
setStatisticForHyperparameters(int[], double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous.UniformHomogeneousDiffSM
setStatisticForHyperparameters(int[], double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.VariableLengthMixtureDiffSM
setStatisticForHyperparameters(int[], double[]) - Method in interface de.jstacs.sequenceScores.statisticalModels.differentiable.VariableLengthDiffSM
This method sets the hyperparameters for the model parameters by
evaluating the given statistic.
setStoreAll(boolean) - Method in class de.jstacs.classifiers.assessment.ClassifierAssessmentAssessParameterSet
This method allows to set the switch for storing all individual performance measure values of each iteration of the
ClassifierAssessment
.
setStringToBeParsed(String) - Method in class de.jstacs.io.SymbolExtractor
Sets a new
String
to be parsed.
setTempDir(File) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.sampling.SamplingScoreBasedClassifier
setThreadIndependentParameters() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
This method allows to set thread independent parameters.
setThreadIndependentParameters() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.DiffSSBasedOptimizableFunction
setThresholdClassWeights(boolean, double) - Method in class de.jstacs.classifiers.AbstractScoreBasedClassifier
setTrainData(DataSet) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method is invoked by the train
-method and sets for a
given data set the data set that should be used for train
.
setTrainData(DataSet) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.MixtureTrainSM
setTrainData(DataSet) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif.ZOOPSTrainSM
setTrainData(DataSet) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
setValidator(ParameterValidator) - Method in class de.jstacs.parameters.SimpleParameter
setValue(byte, double, int, int...) - Method in class de.jstacs.algorithms.graphs.tensor.AsymmetricTensor
setValue(byte, double, int, int...) - Method in class de.jstacs.algorithms.graphs.tensor.SubTensor
setValue(byte, double, int, int...) - Method in class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
Sets the value if it is bigger than the current value and keeps the
parents information.
setValue(byte, double, int, int...) - Method in class de.jstacs.algorithms.graphs.tensor.Tensor
Sets the value for the edge
parents[0],...,parents[k-1] -> child
.
setValue(Object) - Method in class de.jstacs.parameters.EnumParameter
setValue(Object) - Method in class de.jstacs.parameters.FileParameter
setValue(Object) - Method in class de.jstacs.parameters.MultiSelectionParameter
setValue(Object) - Method in class de.jstacs.parameters.Parameter
setValue(Object) - Method in class de.jstacs.parameters.ParameterSetContainer
setValue(Object) - Method in class de.jstacs.parameters.RangeParameter
setValue(Object) - Method in class de.jstacs.parameters.SelectionParameter
Sets the selected value to the one that is specified by the key
value
.
setValue(Object) - Method in class de.jstacs.parameters.SimpleParameter
setValue(double) - Method in class de.jstacs.sampling.AbstractBurnInTest
setValue(double) - Method in interface de.jstacs.sampling.BurnInTest
This method can be used to fill the internal memory with the values that
will be used to determine the length of the burn-in phase.
setValue(double) - Method in class de.jstacs.sampling.SimpleBurnInTest
Deprecated.
setValue(double) - Method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
Sets the current value of this parameter.
setValue(int) - Method in class de.jstacs.utils.DefaultProgressUpdater
setValue(int) - Method in class de.jstacs.utils.GUIProgressUpdater
setValue(int) - Method in class de.jstacs.utils.NullProgressUpdater
setValue(int) - Method in interface de.jstacs.utils.ProgressUpdater
Deprecated.
Sets the current value the supervised process has reached.
setValue(int) - Method in class de.jstacs.utils.TimeLimitedProgressUpdater
setValueFromTag(String, Object) - Method in class de.jstacs.parameters.ParameterSetTagger
This method allows to easily set the value of a parameter defined by the tag.
setValues(String) - Method in class de.jstacs.parameters.RangeParameter
Sets a list of values from a
String
containing a space separated
list of values.
setValues(Object, int, Object, RangeParameter.Scale) - Method in class de.jstacs.parameters.RangeParameter
Sets the values of this
RangeParameter
as a range of values,
specified by a start value, a last value, a number of steps between these
values (without the last value) and a scale in that the values between
the first and the last value are chosen.
setValues(double[]) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMTools.DualFunction
This method set the values of the Lagrange multiplicators of the constraints
setValuesInLogScale(boolean, double, Object, int, Object) - Method in class de.jstacs.parameters.RangeParameter
This method enables you to set a list of values in an easy manner.
setWeight(double) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.phylo.PhyloNode
This method set the weight (length, rate ...) for the incoming edge
setWeights(double...) - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifier
This method set the weights for the summand of the function.
setWeights(double...) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
Sets the weights of each component.
SGIS - Static variable in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMTools
This constant can be used to specify that the model should use the iterative scaling for
training.
SGIS_P - Static variable in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMTools
This constant can be used to specify that the model should use the iterative scaling for
training.
shallBeRanged() - Method in class de.jstacs.parameters.RangeParameter
Returns one of
LIST, RANGE
or
NO
depending on
the input used to specify this
RangeParameter
.
SharedStructureClassifier - Class in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared
This class enables you to learn the structure on all classes of the
classifier together.
SharedStructureClassifier(int, StructureLearner.ModelType, byte, StructureLearner.LearningType, FSDAGTrainSM...) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureClassifier
SharedStructureClassifier(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureClassifier
The standard constructor for the interface
Storable
.
SharedStructureMixture - Class in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared
This class handles a mixture of models with the same structure that is
learned via EM.
SharedStructureMixture(FSDAGTrainSM[], StructureLearner.ModelType, byte, int, double, TerminationCondition) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
SharedStructureMixture(FSDAGTrainSM[], StructureLearner.ModelType, byte, int, double[], double, TerminationCondition) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
SharedStructureMixture(FSDAGTrainSM[], StructureLearner.ModelType, byte, int, boolean, double[], double, TerminationCondition) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
SharedStructureMixture(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared.SharedStructureMixture
The standard constructor for the interface
Storable
.
shortcut - Variable in class de.jstacs.classifiers.differentiableSequenceScoreBased.DiffSSBasedOptimizableFunction
These shortcuts indicate the beginning of a new part in the parameter vector.
ShortSequence - Class in de.jstacs.data.sequences
This class is for sequences with the alphabet symbols encoded as
shorts
s and can therefore be used for discrete
AlphabetContainer
s with alphabets that use many different symbols.
ShortSequence(AlphabetContainer, short[]) - Constructor for class de.jstacs.data.sequences.ShortSequence
Creates a new
ShortSequence
from an array of
short
-
encoded alphabet symbols.
ShortSequence(AlphabetContainer, String) - Constructor for class de.jstacs.data.sequences.ShortSequence
ShortSequence(AlphabetContainer, SequenceAnnotation[], String, String) - Constructor for class de.jstacs.data.sequences.ShortSequence
ShortSequence(AlphabetContainer, SequenceAnnotation[], SymbolExtractor) - Constructor for class de.jstacs.data.sequences.ShortSequence
shouldBeNormalized() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix.GenDisMixClassifierParameterSet
This method indicates if a normalization shall be used while
optimization.
showImage(String, BufferedImage) - Static method in class de.jstacs.utils.REnvironment
Enables you to show an image.
showImage(String, BufferedImage, int) - Static method in class de.jstacs.utils.REnvironment
Enables you to show an image.
shuffle(SimpleDiscreteSequence, int) - Static method in class de.jstacs.data.sequences.SimpleDiscreteSequence
This method implements the algorithm of D.
SignificantMotifOccurrencesFinder - Class in de.jstacs.motifDiscovery
This class enables the user to predict motif occurrences given a specific significance level.
SignificantMotifOccurrencesFinder(MotifDiscoverer, SignificantMotifOccurrencesFinder.RandomSeqType, boolean, int, double) - Constructor for class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
SignificantMotifOccurrencesFinder(MotifDiscoverer, SignificantMotifOccurrencesFinder.RandomSeqType, SignificantMotifOccurrencesFinder.JoinMethod, boolean, int, double) - Constructor for class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
SignificantMotifOccurrencesFinder(MotifDiscoverer, DataSet, double[], double) - Constructor for class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
SignificantMotifOccurrencesFinder(MotifDiscoverer, SignificantMotifOccurrencesFinder.JoinMethod, DataSet, double[], double) - Constructor for class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder
SignificantMotifOccurrencesFinder.JoinMethod - Interface in de.jstacs.motifDiscovery
Interface for methods that combine several profiles over the same sequence
into one common profile
SignificantMotifOccurrencesFinder.RandomSeqType - Enum in de.jstacs.motifDiscovery
SignificantMotifOccurrencesFinder.SumOfProbabilities - Class in de.jstacs.motifDiscovery
Joins several profiles containing log-probabilities into one profile containing
the logarithm of the sum of the probabilities of the single profiles.
SilentEmission - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions
This class implements a silent emission which is used to create silent states.
SilentEmission() - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
The main constructor.
SilentEmission(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.SilentEmission
The standard constructor for the interface
Storable
.
SimpleBurnInTest - Class in de.jstacs.sampling
SimpleBurnInTest(int) - Constructor for class de.jstacs.sampling.SimpleBurnInTest
Deprecated.
This is the main constructor that creates an instance of
SimpleBurnInTest
with fixed burn-in length.
SimpleBurnInTest(StringBuffer) - Constructor for class de.jstacs.sampling.SimpleBurnInTest
Deprecated.
The standard constructor for the interface
Storable
.
SimpleCosts - Class in de.jstacs.algorithms.alignment.cost
Class for simple costs with costs
match
for a match,
mismatch
for a mismatch, and
gap
for a gap (of length 1).
SimpleCosts(double, double, double) - Constructor for class de.jstacs.algorithms.alignment.cost.SimpleCosts
Creates a new instance of simple costs with costs
match
for a match,
mismatch
for a mismatch, and
gap
for a gap (of length 1).
SimpleCosts(StringBuffer) - Constructor for class de.jstacs.algorithms.alignment.cost.SimpleCosts
Restores
SimpleCosts
object from its XML representation.
SimpleDifferentiableState - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states
SimpleDifferentiableState(DifferentiableEmission, String, boolean) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleDifferentiableState
SimpleDiscreteSequence - Class in de.jstacs.data.sequences
This is the main class for any discrete sequence.
SimpleDiscreteSequence(AlphabetContainer, SequenceAnnotation[]) - Constructor for class de.jstacs.data.sequences.SimpleDiscreteSequence
SimpleGaussianSumLogPrior - Class in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior
This class implements a prior that is a product of Gaussian distributions
with mean 0 and equal variance for each parameter.
SimpleGaussianSumLogPrior(double) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SimpleGaussianSumLogPrior
SimpleGaussianSumLogPrior(StringBuffer) - Constructor for class de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior.SimpleGaussianSumLogPrior
The standard constructor for the interface
Storable
.
SimpleHistory - Class in de.jstacs.motifDiscovery.history
This class implements a simple history that has a limited memory that will be
used cyclicly.
SimpleHistory(int) - Constructor for class de.jstacs.motifDiscovery.history.SimpleHistory
This constructor creates a simple history with limited memory.
SimpleHistory(int, boolean, boolean, boolean) - Constructor for class de.jstacs.motifDiscovery.history.SimpleHistory
This constructor creates a simple history with limited memory.
SimpleHistory(StringBuffer) - Constructor for class de.jstacs.motifDiscovery.history.SimpleHistory
This is the constructor for the interface
Storable
.
SimpleParameter - Class in de.jstacs.parameters
Class for a "simple" parameter.
SimpleParameter(StringBuffer) - Constructor for class de.jstacs.parameters.SimpleParameter
The standard constructor for the interface
Storable
.
SimpleParameter(DataType, String, String, boolean) - Constructor for class de.jstacs.parameters.SimpleParameter
SimpleParameter(DataType, String, String, boolean, Object) - Constructor for class de.jstacs.parameters.SimpleParameter
SimpleParameter(DataType, String, String, boolean, ParameterValidator) - Constructor for class de.jstacs.parameters.SimpleParameter
SimpleParameter(DataType, String, String, boolean, ParameterValidator, Object) - Constructor for class de.jstacs.parameters.SimpleParameter
SimpleParameter.DatatypeNotValidException - Exception in de.jstacs.parameters
Class for an
Exception
that can be thrown if the provided
int
-value that represents a data type is not one of the
values defined in
DataType
.
SimpleParameter.IllegalValueException - Exception in de.jstacs.parameters
This exception is thrown if a parameter is not valid.
SimpleParameterSet - Class in de.jstacs.parameters
SimpleParameterSet(Parameter...) - Constructor for class de.jstacs.parameters.SimpleParameterSet
Creates a new SimpleParameterSet
from an array of Parameter
s.
SimpleParameterSet(StringBuffer) - Constructor for class de.jstacs.parameters.SimpleParameterSet
The standard constructor for the interface
Storable
.
SimpleResult - Class in de.jstacs.results
Abstract class for a
Result
with a value of a primitive data type or
String
.
SimpleResult(String, String, DataType) - Constructor for class de.jstacs.results.SimpleResult
The main constructor which takes the main information of a result.
SimpleResult(StringBuffer) - Constructor for class de.jstacs.results.SimpleResult
SimpleSamplingState - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states
This class implements a state that can be used for a HMM that obtains its parameters from sampling.
SimpleSamplingState(SamplingEmission, String, boolean) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleSamplingState
This constructor creates a state that can be used in a HMM that obtains its parameters from sampling.
SimpleSequenceAnnotationParser - Class in de.jstacs.data.sequences.annotation
SimpleSequenceAnnotationParser() - Constructor for class de.jstacs.data.sequences.annotation.SimpleSequenceAnnotationParser
SimpleSequenceIterator - Class in de.jstacs.data.bioJava
SimpleSequenceIterator(Sequence...) - Constructor for class de.jstacs.data.bioJava.SimpleSequenceIterator
SimpleState - Class in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states
SimpleState(Emission, String, boolean) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.SimpleState
SimpleStaticConstraint - Class in de.jstacs.parameters.validation
Class for a
Constraint
that checks values against static values using
the comparison operators defined in the interface
Constraint
.
SimpleStaticConstraint(Number, int) - Constructor for class de.jstacs.parameters.validation.SimpleStaticConstraint
SimpleStaticConstraint(String, int) - Constructor for class de.jstacs.parameters.validation.SimpleStaticConstraint
SimpleStaticConstraint(StringBuffer) - Constructor for class de.jstacs.parameters.validation.SimpleStaticConstraint
The standard constructor for the interface
Storable
.
SimpleStringExtractor - Class in de.jstacs.io
This is a simple class that extracts
String
s.
SimpleStringExtractor(String...) - Constructor for class de.jstacs.io.SimpleStringExtractor
simpleWeights(double[]) - Static method in class de.jstacs.classifiers.performanceMeasures.AbstractPerformanceMeasure
Returns true if all weights in weight
are 1.
SinglePositionSequenceAnnotation - Class in de.jstacs.data.sequences.annotation
Class for some annotations that consist mainly of one position on a sequence.
SinglePositionSequenceAnnotation(SinglePositionSequenceAnnotation.Type, String, int) - Constructor for class de.jstacs.data.sequences.annotation.SinglePositionSequenceAnnotation
SinglePositionSequenceAnnotation(SinglePositionSequenceAnnotation.Type, String, int, Result...) - Constructor for class de.jstacs.data.sequences.annotation.SinglePositionSequenceAnnotation
SinglePositionSequenceAnnotation(StringBuffer) - Constructor for class de.jstacs.data.sequences.annotation.SinglePositionSequenceAnnotation
The standard constructor for the interface
Storable
.
SinglePositionSequenceAnnotation.Type - Enum in de.jstacs.data.sequences.annotation
SINGLETON - Static variable in class de.jstacs.data.alphabets.DNAAlphabet.DNAAlphabetParameterSet
The only instance of this class.
SINGLETON - Static variable in class de.jstacs.data.alphabets.DNAAlphabet
The only instance of this class.
SINGLETON - Static variable in class de.jstacs.data.alphabets.DNAAlphabetContainer.DNAAlphabetContainerParameterSet
The only instance of this class.
SINGLETON - Static variable in class de.jstacs.data.alphabets.DNAAlphabetContainer
The only instance of this class.
SINGLETON - Static variable in class de.jstacs.data.alphabets.IUPACDNAAlphabet.IUPACDNAAlphabetParameterSet
The only instance of this class.
SINGLETON - Static variable in class de.jstacs.data.alphabets.IUPACDNAAlphabet
The only instance of this class.
SINGLETON - Static variable in class de.jstacs.data.alphabets.ProteinAlphabet.ProteinAlphabetParameterSet
The only instance of this class.
SINGLETON - Static variable in class de.jstacs.data.alphabets.ProteinAlphabet
The only instance of this class.
Singleton - Interface in de.jstacs
This interface states that the implementing class has only one immutable instance.
Singleton.SingletonHandler - Class in de.jstacs
This handler helps to retrieve the single instance of a
Singleton
.
SingletonHandler() - Constructor for class de.jstacs.Singleton.SingletonHandler
size() - Method in class de.jstacs.AnnotatedEntityList
SkewNormalLikeDurationDiffSM - Class in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif
This class implements a skew normal like discrete truncated distribution.
SkewNormalLikeDurationDiffSM(int, int, double, double, double) - Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
This is the main constructor if the parameters are fixed.
SkewNormalLikeDurationDiffSM(int, int, boolean, double, double, boolean, double, double, boolean, double, double, int) - Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
This is the constructor that allows the most flexible handling of the parameters.
SkewNormalLikeDurationDiffSM(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif.SkewNormalLikeDurationDiffSM
skip(int) - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.SequenceIterator
This method skips some position.
skipInit - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
Indicates if the model should be initialized (randomly) before optimization
skipLastClassifiersDuringClassifierTraining - Variable in class de.jstacs.classifiers.assessment.ClassifierAssessment
Skip last classifier.
SmallDifferenceOfFunctionEvaluationsCondition - Class in de.jstacs.algorithms.optimization.termination
This class implements a
TerminationCondition
that stops an optimization
if the difference of the current and the last function evaluations will be small, i.e.,

.
SmallDifferenceOfFunctionEvaluationsCondition(double) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition
This constructor creates an instance that stops the optimization if the difference of the
current and the last function evaluations is smaller than epsilon
.
SmallDifferenceOfFunctionEvaluationsCondition(SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition
This is the main constructor creating an instance from a given parameter set.
SmallDifferenceOfFunctionEvaluationsCondition(StringBuffer) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition
The standard constructor for the interface
Storable
.
SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet - Class in de.jstacs.algorithms.optimization.termination
SmallDifferenceOfFunctionEvaluationsConditionParameterSet() - Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet
This constructor creates an empty parameter set.
SmallDifferenceOfFunctionEvaluationsConditionParameterSet(StringBuffer) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet
The standard constructor for the interface
Storable
.
SmallDifferenceOfFunctionEvaluationsConditionParameterSet(double) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallDifferenceOfFunctionEvaluationsCondition.SmallDifferenceOfFunctionEvaluationsConditionParameterSet
This constructor creates a filled instance of a parameters set.
SmallGradientConditon - Class in de.jstacs.algorithms.optimization.termination
This class implements a
TerminationCondition
that allows no further iteration in an optimization if the
the gradient becomes small, i.e.,

.
SmallGradientConditon(double) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon
This constructor creates an instance that stops the optimization if the sum of the absolute
values of gradient components is smaller than epsilon
.
SmallGradientConditon(SmallGradientConditon.SmallGradientConditonParameterSet) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon
This is the main constructor creating an instance from a given parameter set.
SmallGradientConditon(StringBuffer) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon
The standard constructor for the interface
Storable
.
SmallGradientConditon.SmallGradientConditonParameterSet - Class in de.jstacs.algorithms.optimization.termination
SmallGradientConditonParameterSet() - Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon.SmallGradientConditonParameterSet
This constructor creates an empty parameter set.
SmallGradientConditonParameterSet(StringBuffer) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon.SmallGradientConditonParameterSet
The standard constructor for the interface
Storable
.
SmallGradientConditonParameterSet(double) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallGradientConditon.SmallGradientConditonParameterSet
This constructor creates a filled instance of a parameters set.
SmallStepCondition - Class in de.jstacs.algorithms.optimization.termination
This class implements a
TerminationCondition
that allows no further iteration in an optimization if the
scalar product of the current and the last values of
x
will be small, i.e.,

.
SmallStepCondition(double) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition
This constructor creates an instance that allows no further iteration in an optimization if the
scalar product of the current and the last values of x
is smaller than epsilon
.
SmallStepCondition(SmallStepCondition.SmallStepConditionParameterSet) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition
This is the main constructor creating an instance from a given parameter set.
SmallStepCondition(StringBuffer) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition
The standard constructor for the interface
Storable
.
SmallStepCondition.SmallStepConditionParameterSet - Class in de.jstacs.algorithms.optimization.termination
SmallStepConditionParameterSet() - Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition.SmallStepConditionParameterSet
This constructor creates an empty parameter set.
SmallStepConditionParameterSet(StringBuffer) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition.SmallStepConditionParameterSet
The standard constructor for the interface
Storable
.
SmallStepConditionParameterSet(double) - Constructor for class de.jstacs.algorithms.optimization.termination.SmallStepCondition.SmallStepConditionParameterSet
This constructor creates a filled instance of a parameters set.
smooth(double[]) - Method in class de.jstacs.data.DinucleotideProperty.MeanSmoothing
smooth(double[]) - Method in class de.jstacs.data.DinucleotideProperty.MedianSmoothing
smooth(double[]) - Method in class de.jstacs.data.DinucleotideProperty.NoSmoothing
smooth(double[]) - Method in class de.jstacs.data.DinucleotideProperty.Smoothing
Returns the smoothed version of original
.
Smoothing() - Constructor for class de.jstacs.data.DinucleotideProperty.Smoothing
SoftOneOfN - Class in de.jstacs.utils.random
This random generator returns 1-epsilon
for one and equal parts
for the rest of a random vector.
SoftOneOfN(double) - Constructor for class de.jstacs.utils.random.SoftOneOfN
This constructor can be used for (soft) sampling one of n.
SoftOneOfN() - Constructor for class de.jstacs.utils.random.SoftOneOfN
This constructor can be used for (hard) sampling one of n.
sort(String) - Method in class de.jstacs.results.ListResult
This method enables you to sort the entries of this container by a
specified column.
sort() - Method in class de.jstacs.utils.DoubleList
sort() - Method in class de.jstacs.utils.IntList
This method sorts the elements of the list.
sortAlongWith(double[], double[]...) - Static method in class de.jstacs.utils.ToolBox
This method implements a sort algorithm on the array arrayToBeSorted
.
sostream - Variable in class de.jstacs.classifiers.differentiableSequenceScoreBased.ScoreClassifier
This stream is used for comments, e.g.
sostream - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM
This stream is used for comments, computation steps/results or any other
kind of output during the training, ...
sostream - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
This is the stream for writing information while training.
sostream - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This is the stream for writing information while training.
source - Variable in class de.jstacs.algorithms.graphs.Edge
The source node.
SparseSequence - Class in de.jstacs.data.sequences
This class is an implementation for sequences on one alphabet with length 4.
SparseSequence(AlphabetContainer, String) - Constructor for class de.jstacs.data.sequences.SparseSequence
SparseSequence(AlphabetContainer, SymbolExtractor) - Constructor for class de.jstacs.data.sequences.SparseSequence
SparseStringExtractor - Class in de.jstacs.io
SparseStringExtractor(String) - Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file.
SparseStringExtractor(File) - Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file.
SparseStringExtractor(String, SequenceAnnotationParser) - Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file.
SparseStringExtractor(String, char) - Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file and ignores
those starting with the comment character ignore
.
SparseStringExtractor(File, char) - Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file and ignores
those starting with the comment character ignore
.
SparseStringExtractor(String, char, SequenceAnnotationParser) - Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file and ignores
those starting with the comment character ignore
.
SparseStringExtractor(String, String, SequenceAnnotationParser) - Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file and sets the
annotation of the source to annotation
.
SparseStringExtractor(String, char, String, SequenceAnnotationParser) - Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file, ignores those
starting with the comment character ignore
and sets the
annotation of the source to annotation
.
SparseStringExtractor(File, char, String, SequenceAnnotationParser) - Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a file, ignores those
starting with the comment character ignore
and sets the
annotation of the source to annotation
.
SparseStringExtractor(Reader, char, String, SequenceAnnotationParser) - Constructor for class de.jstacs.io.SparseStringExtractor
A constructor that reads the lines from a
Reader
, ignores those
starting with the comment character
ignore
and sets the
annotation of the source to
annotation
.
spearmanCorrelation(double[], double[]) - Static method in class de.jstacs.utils.ToolBox
The method computes the Spearman correlation of two vectors.
spearmanCorrelation(double[], double[], double[]) - Static method in class de.jstacs.utils.ToolBox
Computes the Spearman correlation of two vectors with weights on the individual entries.
SplitSequenceAnnotationParser - Class in de.jstacs.data.sequences.annotation
SplitSequenceAnnotationParser() - Constructor for class de.jstacs.data.sequences.annotation.SplitSequenceAnnotationParser
SplitSequenceAnnotationParser(String, String) - Constructor for class de.jstacs.data.sequences.annotation.SplitSequenceAnnotationParser
standardDeviation - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.continuous.PluginGaussianEmission
Initial standard deviation.
start - Variable in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
This array specifies the start positions of the specific parts.
START_NODE - Static variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
The
String
for the start node used in Graphviz annotation.
STARTDISTANCE - Static variable in class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEMTools
The start distance for the line search in an optimization using the
Optimizer
.
StartDistanceForecaster - Interface in de.jstacs.algorithms.optimization
This interface is used to determine the next start distance that will be used
in a line search.
startIndexOfParams - Variable in class de.jstacs.sequenceScores.differentiable.IndependentProductDiffSS
starts - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.CompositeTrainSM
The start indices.
starts - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
The number of starts.
startS1 - Variable in class de.jstacs.algorithms.alignment.Alignment
The start position in the first sequence
startS2 - Variable in class de.jstacs.algorithms.alignment.Alignment
The start position in the second sequence
State - Interface in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states
This interface declares the methods of any state used in a hidden Markov model.
stateList - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models.HigherOrderHMM
Helper variable = only for internal use.
states - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.AbstractHMM
The (hidden) states of the HMM.
states - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
The states that can be visited
StationaryDistribution - Class in de.jstacs.utils
This class can be used to determine the stationary distribution.
StationaryDistribution() - Constructor for class de.jstacs.utils.StationaryDistribution
stationaryIteration - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
The number of (stationary) iterations of the Gibbs Sampler.
statistic - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.states.emissions.discrete.AbstractConditionalDiscreteEmission
The array for storing the statistics for
each parameter
statistic - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.BasicHigherOrderTransition.AbstractTransitionElement
The sufficient statistic for determining the parameters during sampling, viterbi or Baum-Welch training.
StatisticalModel - Interface in de.jstacs.sequenceScores.statisticalModels
This interface declares methods of a statistical model, i.e., a
SequenceScore
that defines a proper likelihood
over the input
Sequence
s.
StatisticalModelTester - Class in de.jstacs.utils
This class is useful for some test for any (discrete) models.
StatisticalModelTester() - Constructor for class de.jstacs.utils.StatisticalModelTester
StatisticalTest - Class in de.jstacs.utils
This class enables the user to compute some divergences.
StatisticalTest() - Constructor for class de.jstacs.utils.StatisticalTest
statisticsTransitionProb - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.DistanceBasedScaledTransitionElement
Represents the summarized epsilons required for estimating the transition probabilities from the context
.
statisticsTransitionProb - Variable in class de.jstacs.sequenceScores.statisticalModels.trainable.hmm.transitions.elements.ReferenceBasedTransitionElement
Represents the gammas required for estimating the transition probabilities not including pseudocounts.
STEEPEST_DESCENT - Static variable in class de.jstacs.algorithms.optimization.Optimizer
This constant can be used to specify that the steepest descent should be
used in the optimize
-method.
steepestDescent(DifferentiableFunction, double[], TerminationCondition, double, StartDistanceForecaster, OutputStream, Time) - Static method in class de.jstacs.algorithms.optimization.Optimizer
The steepest descent.
stopThreads() - Method in interface de.jstacs.algorithms.optimization.MultiThreadedFunction
This method can and should be used to stop all threads if they are not needed any longer.
stopThreads() - Method in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractMultiThreadedOptimizableFunction
This method can and should be used to stop all threads if they are not needed any longer.
Storable - Interface in de.jstacs
This is the root interface for all immutable objects that must be stored in
e.g.
StorableResult - Class in de.jstacs.results
StorableResult(String, String, Storable) - Constructor for class de.jstacs.results.StorableResult
Creates a result for an XML representation of an object.
StorableResult(StringBuffer) - Constructor for class de.jstacs.results.StorableResult
The standard constructor for the interface
Storable
.
StorableResultSaver - Class in de.jstacs.results.savers
StorableValidator - Class in de.jstacs.parameters.validation
Class for a validator that validates instances and XML representations for
the correct class types (e.g.
StorableValidator(Class<? extends Storable>, boolean) - Constructor for class de.jstacs.parameters.validation.StorableValidator
StorableValidator(Class<? extends Storable>) - Constructor for class de.jstacs.parameters.validation.StorableValidator
StorableValidator(StringBuffer) - Constructor for class de.jstacs.parameters.validation.StorableValidator
The standard constructor for the interface
Storable
.
StrandDiffSM - Class in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture
This class enables the user to search on both strand.
StrandDiffSM(DifferentiableStatisticalModel, double, int, boolean, StrandDiffSM.InitMethod) - Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
This constructor creates a StrandDiffSM that optimizes the usage of each strand.
StrandDiffSM(DifferentiableStatisticalModel, int, boolean, StrandDiffSM.InitMethod, double) - Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
This constructor creates a StrandDiffSM that has a fixed frequency for the strand usage.
StrandDiffSM(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.StrandDiffSM
StrandDiffSM.InitMethod - Enum in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture
This enum defines the different types of plug-in initialization of a
StrandDiffSM
.
StrandedLocatedSequenceAnnotationWithLength - Class in de.jstacs.data.sequences.annotation
StrandedLocatedSequenceAnnotationWithLength(int, int, StrandedLocatedSequenceAnnotationWithLength.Strand, String, String, Result...) - Constructor for class de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength
StrandedLocatedSequenceAnnotationWithLength(int, int, StrandedLocatedSequenceAnnotationWithLength.Strand, String, String, Collection<Result>) - Constructor for class de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength
StrandedLocatedSequenceAnnotationWithLength(int, int, StrandedLocatedSequenceAnnotationWithLength.Strand, String, String, SequenceAnnotation[], Result...) - Constructor for class de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength
StrandedLocatedSequenceAnnotationWithLength(String, String, StrandedLocatedSequenceAnnotationWithLength.Strand, LocatedSequenceAnnotation[], Result...) - Constructor for class de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength
StrandedLocatedSequenceAnnotationWithLength(StringBuffer) - Constructor for class de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength
The standard constructor for the interface
Storable
.
StrandedLocatedSequenceAnnotationWithLength.Strand - Enum in de.jstacs.data.sequences.annotation
This enum defines possible orientations on the strands.
strandedness() - Method in enum de.jstacs.data.sequences.annotation.StrandedLocatedSequenceAnnotationWithLength.Strand
Returns the strandedness, i.e.
StrandTrainSM - Class in de.jstacs.sequenceScores.statisticalModels.trainable.mixture
This model handles sequences that can either lie on the forward strand or on
the reverse complementary strand.
StrandTrainSM(TrainableStatisticalModel, int, boolean, double[], double, AbstractMixtureTrainSM.Algorithm, double, TerminationCondition, AbstractMixtureTrainSM.Parameterization, int, int, BurnInTest) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
StrandTrainSM(TrainableStatisticalModel, int, double[], double, TerminationCondition, AbstractMixtureTrainSM.Parameterization) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
Creates an instance using EM and estimating the component probabilities.
StrandTrainSM(TrainableStatisticalModel, int, double, double, TerminationCondition, AbstractMixtureTrainSM.Parameterization) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
Creates an instance using EM and fixed component probabilities.
StrandTrainSM(TrainableStatisticalModel, int, double[], int, int, BurnInTest) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
Creates an instance using Gibbs Sampling and sampling the component
probabilities.
StrandTrainSM(TrainableStatisticalModel, int, double, int, int, BurnInTest) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
Creates an instance using Gibbs Sampling and fixed component
probabilities.
StrandTrainSM(StringBuffer) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.StrandTrainSM
The constructor for the interface
Storable
.
stream - Variable in class de.jstacs.utils.graphics.EPSAdaptor
The stream for saving the results
StringAlignment - Class in de.jstacs.algorithms.alignment
Class for the representation of an alignment of
String
s.
StringAlignment(StringBuffer) - Constructor for class de.jstacs.algorithms.alignment.StringAlignment
StringAlignment(double, String...) - Constructor for class de.jstacs.algorithms.alignment.StringAlignment
This constructor creates an instance storing the aligned Strings and the costs of the alignment.
StringAlignment(double, String[], Result) - Constructor for class de.jstacs.algorithms.alignment.StringAlignment
This constructor creates an instance storing the aligned Strings and the costs of the alignment.
StringExtractor - Class in de.jstacs.io
This class implements the reader that extracts
String
s from either a
File
or a
String
.
StringExtractor(File, int) - Constructor for class de.jstacs.io.StringExtractor
A constructor that reads the lines from file
.
StringExtractor(File, int, char) - Constructor for class de.jstacs.io.StringExtractor
A constructor that reads the lines from file
and ignores
those starting with the comment character ignore
.
StringExtractor(File, int, String) - Constructor for class de.jstacs.io.StringExtractor
A constructor that reads the lines from file
and sets the
annotation of the source to annotation
.
StringExtractor(File, int, char, String) - Constructor for class de.jstacs.io.StringExtractor
A constructor that reads the lines from file
, ignores those
starting with the comment character ignore
and sets the
annotation of the source to annotation
.
StringExtractor(String, int, String) - Constructor for class de.jstacs.io.StringExtractor
A constructor that reads the lines from a
String
content
and sets the annotation of the source to
annotation
.
StringExtractor(String, int, char, String) - Constructor for class de.jstacs.io.StringExtractor
A constructor that reads the lines from a
String
content
, ignores those starting with the comment character
ignore
and sets the annotation of the source to
annotation
.
StructureLearner - Class in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous
This class can be used to learn the structure of any discrete model.
StructureLearner(AlphabetContainer, int, double) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.StructureLearner
StructureLearner(AlphabetContainer, int) - Constructor for class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.StructureLearner
StructureLearner.LearningType - Enum in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous
This
enum
defines the different types of learning that are
possible with the
StructureLearner
.
StructureLearner.ModelType - Enum in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous
This
enum
defines the different types of models that can be
learned with the
StructureLearner
.
structureMeasure - Variable in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BayesianNetworkDiffSM
Measure
that defines the network structure.
stylesheet - Static variable in class de.jstacs.tools.ui.galaxy.GalaxyAdaptor
The stylesheet used for the Galaxy HTML output.
SubclassFinder - Class in de.jstacs.utils
Utility-class with static methods to
find all sub-classes of a certain class (or interface) within the scope
of the current class-loader
find all sub-classes of a certain class (or interface) within the scope
of the current class-loader that can be instantiated, i.e.
SubclassFinder() - Constructor for class de.jstacs.utils.SubclassFinder
subSampling(int) - Method in class de.jstacs.data.DataSet
Randomly samples elements, i.e.
subSampling(double, double[]) - Method in class de.jstacs.data.DataSet
Sub-samples sequences and corresponding weights from this
DataSet
.
SubSequence(AlphabetContainer, Sequence, int, int) - Constructor for class de.jstacs.data.sequences.Sequence.SubSequence
SubSequence(Sequence, int, int) - Constructor for class de.jstacs.data.sequences.Sequence.SubSequence
SubTensor - Class in de.jstacs.algorithms.graphs.tensor
This Tensor can be used to extract or use only a part of a complete
Tensor
.
SubTensor(Tensor, int, int) - Constructor for class de.jstacs.algorithms.graphs.tensor.SubTensor
This constructor creates a
SubTensor
using the
Tensor
t
for the nodes
offset, offset+1, ..., offset+length-1
.
sum - Variable in class de.jstacs.classifiers.differentiableSequenceScoreBased.AbstractOptimizableFunction
The sums of the weighted data per class and additional the total weight
sum.
sum(double[]) - Static method in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.Measure
Computes the sum of all elements in the array ar
.
sum(double...) - Static method in class de.jstacs.utils.ToolBox
Computes the sum of the values in array
sum(int, int, double[]) - Static method in class de.jstacs.utils.ToolBox
Computes the sum of the values in array
starting at
start
until end
.
sum(boolean[]) - Static method in class de.jstacs.utils.ToolBox
Counts the number of true
values in bools
(similar to sum on booleans in R).
sumNormalisation(double[]) - Static method in class de.jstacs.utils.Normalisation
The method does a sum-normalisation on d
, i.e.
sumNormalisation(double[], double[], int) - Static method in class de.jstacs.utils.Normalisation
The method does a sum-normalisation on d
, i.e.
SumOfProbabilities() - Constructor for class de.jstacs.motifDiscovery.SignificantMotifOccurrencesFinder.SumOfProbabilities
SVGAdaptor - Class in de.jstacs.utils.graphics
SVGAdaptor() - Constructor for class de.jstacs.utils.graphics.SVGAdaptor
Creates a new adaptor for plotting to an SVG device.
swap() - Method in class de.jstacs.sequenceScores.statisticalModels.trainable.mixture.AbstractMixtureTrainSM
This method swaps the current component models with the alternative
model.
symbol - Variable in class de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.BNDiffSMParameter
The symbol (out of some
Alphabet
) this parameter
is responsible for.
SymbolExtractor - Class in de.jstacs.io
SymbolExtractor(String) - Constructor for class de.jstacs.io.SymbolExtractor
SymbolExtractor(String, String) - Constructor for class de.jstacs.io.SymbolExtractor
SymmetricKullbackLeiblerDivergence(double) - Constructor for class de.jstacs.utils.PFMComparator.SymmetricKullbackLeiblerDivergence
This constructor creates a new instance with a given value for the equivalent sample size.
SymmetricTensor - Class in de.jstacs.algorithms.graphs.tensor
This class can be used for
Tensor
s with a special symmetry property.
SymmetricTensor(int, byte) - Constructor for class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
This constructor creates an empty symmetric tensor with given dimension.
SymmetricTensor(SymmetricTensor[], double[]) - Constructor for class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
SymmetricTensor(AsymmetricTensor) - Constructor for class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
This constructor creates and checks a filled asymmetric tensor from an
AsymmetricTensor
instance.
SymmetricTensor(double[][][], int, byte) - Constructor for class de.jstacs.algorithms.graphs.tensor.SymmetricTensor
This constructor creates and checks a filled asymmetric tensor with given
dimension.
SysProtocol() - Constructor for class de.jstacs.tools.ui.cli.CLI.SysProtocol
Creates a new, empty protocol.