|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |
Uses of DifferentiableSequenceScore in de.jstacs.classifiers.differentiableSequenceScoreBased |
---|
Fields in de.jstacs.classifiers.differentiableSequenceScoreBased declared as DifferentiableSequenceScore | |
---|---|
protected DifferentiableSequenceScore[] |
ScoreClassifier.score
The internally used scoring functions. |
protected DifferentiableSequenceScore[][] |
DiffSSBasedOptimizableFunction.score
These DifferentiableSequenceScore s are used during the parallel computation. |
Methods in de.jstacs.classifiers.differentiableSequenceScoreBased that return DifferentiableSequenceScore | |
---|---|
DifferentiableSequenceScore |
ScoreClassifier.getDifferentiableSequenceScore(int i)
Returns the internally used DifferentiableSequenceScore with index
i . |
DifferentiableSequenceScore[] |
ScoreClassifier.getDifferentiableSequenceScores()
Returns all internally used DifferentiableSequenceScore s in the internal
order. |
Methods in de.jstacs.classifiers.differentiableSequenceScoreBased with parameters of type DifferentiableSequenceScore | |
---|---|
abstract void |
DiffSSBasedOptimizableFunction.reset(DifferentiableSequenceScore[] funs)
This method allows to reset the internally used functions and the corresponding objects. |
Constructors in de.jstacs.classifiers.differentiableSequenceScoreBased with parameters of type DifferentiableSequenceScore | |
---|---|
DiffSSBasedOptimizableFunction(int threads,
DifferentiableSequenceScore[] score,
DataSet[] data,
double[][] weights,
LogPrior prior,
boolean norm,
boolean freeParams)
Creates an instance with the underlying infrastructure. |
|
ScoreClassifier(ScoreClassifierParameterSet params,
double lastScore,
DifferentiableSequenceScore... score)
Creates a new ScoreClassifier from a given
ScoreClassifierParameterSet and DifferentiableSequenceScore s . |
Uses of DifferentiableSequenceScore in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix |
---|
Methods in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix with parameters of type DifferentiableSequenceScore | |
---|---|
void |
LogGenDisMixFunction.reset(DifferentiableSequenceScore[] funs)
|
Constructors in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix with parameters of type DifferentiableSequenceScore | |
---|---|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double lastScore,
double[] beta,
DifferentiableSequenceScore... score)
This constructor creates an instance and sets the value of the last (external) optimization. |
|
LogGenDisMixFunction(int threads,
DifferentiableSequenceScore[] score,
DataSet[] data,
double[][] weights,
LogPrior prior,
double[] beta,
boolean norm,
boolean freeParams)
The constructor for creating an instance that can be used in an Optimizer . |
|
OneDataSetLogGenDisMixFunction(int threads,
DifferentiableSequenceScore[] score,
DataSet data,
double[][] weights,
LogPrior prior,
double[] beta,
boolean norm,
boolean freeParams)
The constructor for creating an instance that can be used in an Optimizer . |
Uses of DifferentiableSequenceScore in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior |
---|
Methods in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior with parameters of type DifferentiableSequenceScore | |
---|---|
void |
SeparateLogPrior.set(boolean freeParameters,
DifferentiableSequenceScore... funs)
|
void |
LogPrior.set(boolean freeParameters,
DifferentiableSequenceScore... funs)
Resets all pre-computed values to their initial values using the DifferentiableSequenceScore s funs . |
void |
CompositeLogPrior.set(boolean freeParameters,
DifferentiableSequenceScore... funs)
|
Uses of DifferentiableSequenceScore in de.jstacs.classifiers.differentiableSequenceScoreBased.msp |
---|
Constructors in de.jstacs.classifiers.differentiableSequenceScoreBased.msp with parameters of type DifferentiableSequenceScore | |
---|---|
MSPClassifier(GenDisMixClassifierParameterSet params,
DifferentiableSequenceScore... score)
This convenience constructor creates an MSPClassifier that used MCL principle for training. |
|
MSPClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
DifferentiableSequenceScore... score)
The default constructor that creates a new MSPClassifier from a
given parameter set, a prior and DifferentiableSequenceScore s for the
classes. |
|
MSPClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double lastScore,
DifferentiableSequenceScore... score)
This constructor that creates a new MSPClassifier from a
given parameter set, a prior and DifferentiableSequenceScore s for the
classes. |
Uses of DifferentiableSequenceScore in de.jstacs.motifDiscovery |
---|
Methods in de.jstacs.motifDiscovery with parameters of type DifferentiableSequenceScore | |
---|---|
static History[][] |
MutableMotifDiscovererToolbox.createHistoryArray(DifferentiableSequenceScore[] funs,
History template)
This method creates a History-array that can be used in an optimization. |
static int[][] |
MutableMotifDiscovererToolbox.createMinimalNewLengthArray(DifferentiableSequenceScore[] funs)
This method creates a minimalNewLength-array that can be used in an optimization. |
static boolean |
MutableMotifDiscovererToolbox.doHeuristicSteps(DifferentiableSequenceScore[] funs,
DataSet[] data,
double[][] weights,
DiffSSBasedOptimizableFunction opt,
DifferentiableFunction neg,
byte algorithm,
double linEps,
StartDistanceForecaster startDistance,
SafeOutputStream out,
boolean breakOnChanged,
History[][] hist,
int[][] minimalNewLength,
boolean maxPos)
This method tries to make some heuristic step if at least one DifferentiableSequenceScore is a MutableMotifDiscoverer . |
static Sequence[] |
MutableMotifDiscovererToolbox.enumerate(DifferentiableSequenceScore[] funs,
int[] classIndex,
int[] motifIndex,
RecyclableSequenceEnumerator[] rse,
double weight,
DiffSSBasedOptimizableFunction opt,
OutputStream out)
This method allows to enumerate all possible seeds for a number of motifs in the MutableMotifDiscoverer s of a specific classes. |
static Sequence |
MutableMotifDiscovererToolbox.enumerate(DifferentiableSequenceScore[] funs,
int classIndex,
int motifIndex,
RecyclableSequenceEnumerator rse,
double weight,
DiffSSBasedOptimizableFunction opt,
OutputStream out)
This method allows to enumerate all possible seeds for a motif in the MutableMotifDiscoverer of a specific class. |
static boolean |
MutableMotifDiscovererToolbox.findModification(int clazz,
int motif,
MutableMotifDiscoverer mmd,
DifferentiableSequenceScore[] score,
DataSet[] data,
double[][] weights,
DiffSSBasedOptimizableFunction opt,
DifferentiableFunction neg,
byte algo,
double linEps,
StartDistanceForecaster startDistance,
SafeOutputStream out,
History hist,
int minimalNewLength,
boolean maxPos)
This method tries to find a modification, i.e. shifting, shrinking, or expanding a motif, that is promising. |
static ComparableElement<double[],Double>[] |
MutableMotifDiscovererToolbox.getSortedInitialParameters(DifferentiableSequenceScore[] funs,
MutableMotifDiscovererToolbox.InitMethodForDiffSM[] init,
DiffSSBasedOptimizableFunction opt,
int n,
OutputStream stream,
int optimizationSteps)
This method allows to initialize the DifferentiableSequenceScore using different MutableMotifDiscovererToolbox.InitMethodForDiffSM . |
static double[][] |
MutableMotifDiscovererToolbox.optimize(DifferentiableSequenceScore[] funs,
DiffSSBasedOptimizableFunction opt,
byte algorithm,
AbstractTerminationCondition condition,
double linEps,
StartDistanceForecaster startDistance,
SafeOutputStream out,
boolean breakOnChanged,
History[][] hist,
int[][] minimalNewLength,
OptimizableFunction.KindOfParameter plugIn,
boolean maxPos)
This method tries to optimize the problem at hand as good as possible. |
static double[][] |
MutableMotifDiscovererToolbox.optimize(DifferentiableSequenceScore[] funs,
DiffSSBasedOptimizableFunction opt,
byte algorithm,
AbstractTerminationCondition condition,
double linEps,
StartDistanceForecaster startDistance,
SafeOutputStream out,
boolean breakOnChanged,
History template,
OptimizableFunction.KindOfParameter plugIn,
boolean maxPos)
This method tries to optimize the problem at hand as good as possible. |
Uses of DifferentiableSequenceScore in de.jstacs.sequenceScores.differentiable |
---|
Classes in de.jstacs.sequenceScores.differentiable that implement DifferentiableSequenceScore | |
---|---|
class |
AbstractDifferentiableSequenceScore
This class is the main part of any ScoreClassifier . |
class |
IndependentProductDiffSS
This class enables the user to model parts of a sequence independent of each other. |
class |
UniformDiffSS
This DifferentiableSequenceScore does nothing. |
Fields in de.jstacs.sequenceScores.differentiable declared as DifferentiableSequenceScore | |
---|---|
protected DifferentiableSequenceScore[] |
IndependentProductDiffSS.score
The internally used DifferentiableSequenceScore s. |
Methods in de.jstacs.sequenceScores.differentiable that return DifferentiableSequenceScore | |
---|---|
DifferentiableSequenceScore |
DifferentiableSequenceScore.clone()
Creates a clone (deep copy) of the current DifferentiableSequenceScore
instance. |
DifferentiableSequenceScore[] |
IndependentProductDiffSS.getFunctions()
This method returns a deep copy of the internally used DifferentiableSequenceScore . |
Methods in de.jstacs.sequenceScores.differentiable with parameters of type DifferentiableSequenceScore | |
---|---|
protected static int[] |
IndependentProductDiffSS.getLengthArray(DifferentiableSequenceScore... function)
This method provides an array of lengths that can be used for instance as IndependentProductDiffSS.partialLength . |
static int |
AbstractDifferentiableSequenceScore.getNumberOfStarts(DifferentiableSequenceScore[] score)
Returns the number of recommended starts in a numerical optimization. |
Constructors in de.jstacs.sequenceScores.differentiable with parameters of type DifferentiableSequenceScore | |
---|---|
IndependentProductDiffSS(boolean plugIn,
DifferentiableSequenceScore... functions)
This constructor creates an instance of an IndependentProductDiffSS from a given series of
independent DifferentiableSequenceScore s. |
|
IndependentProductDiffSS(boolean plugIn,
DifferentiableSequenceScore[] functions,
int[] length)
This constructor creates an instance of an IndependentProductDiffSS from given series of
independent DifferentiableSequenceScore s and lengths. |
|
IndependentProductDiffSS(boolean plugIn,
DifferentiableSequenceScore[] functions,
int[] index,
int[] length,
boolean[] reverse)
This is the main constructor. |
Uses of DifferentiableSequenceScore in de.jstacs.sequenceScores.differentiable.logistic |
---|
Classes in de.jstacs.sequenceScores.differentiable.logistic that implement DifferentiableSequenceScore | |
---|---|
class |
LogisticDiffSS
This class implements a logistic function. |
Uses of DifferentiableSequenceScore in de.jstacs.sequenceScores.statisticalModels.differentiable |
---|
Subinterfaces of DifferentiableSequenceScore in de.jstacs.sequenceScores.statisticalModels.differentiable | |
---|---|
interface |
DifferentiableStatisticalModel
The interface for normalizable DifferentiableSequenceScore s. |
interface |
SamplingDifferentiableStatisticalModel
Interface for DifferentiableStatisticalModel s that can be used for
Metropolis-Hastings sampling in a SamplingScoreBasedClassifier . |
interface |
VariableLengthDiffSM
This is an interface for all DifferentiableStatisticalModel s that allow to score
subsequences of arbitrary length. |
Classes in de.jstacs.sequenceScores.statisticalModels.differentiable that implement DifferentiableSequenceScore | |
---|---|
class |
AbstractDifferentiableStatisticalModel
This class is the main part of any ScoreClassifier . |
class |
AbstractVariableLengthDiffSM
This abstract class implements some methods declared in DifferentiableStatisticalModel based on the declaration
of methods in VariableLengthDiffSM . |
class |
CyclicMarkovModelDiffSM
This scoring function implements a cyclic Markov model of arbitrary order and periodicity for any sequence length. |
class |
IndependentProductDiffSM
This class enables the user to model parts of a sequence independent of each other. |
class |
MappingDiffSM
This class implements a DifferentiableStatisticalModel that works on
mapped Sequence s. |
class |
MarkovRandomFieldDiffSM
This class implements the scoring function for any MRF (Markov Random Field). |
class |
MultiDimensionalSequenceWrapperDiffSM
This class implements a simple wrapper for multidimensional sequences. |
class |
NormalizedDiffSM
This class makes an unnormalized DifferentiableStatisticalModel to a normalized DifferentiableStatisticalModel . |
class |
UniformDiffSM
This DifferentiableStatisticalModel does nothing. |
Methods in de.jstacs.sequenceScores.statisticalModels.differentiable with parameters of type DifferentiableSequenceScore | |
---|---|
static boolean |
AbstractDifferentiableStatisticalModel.isNormalized(DifferentiableSequenceScore... function)
This method checks whether all given DifferentiableStatisticalModel s
are normalized. |
Constructors in de.jstacs.sequenceScores.statisticalModels.differentiable with parameters of type DifferentiableSequenceScore | |
---|---|
MultiDimensionalSequenceWrapperDiffSM(DifferentiableSequenceScore function)
The main constructor. |
Uses of DifferentiableSequenceScore in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels that implement DifferentiableSequenceScore | |
---|---|
class |
BayesianNetworkDiffSM
This class implements a scoring function that is a moral directed graphical model, i.e. a moral Bayesian network. |
class |
MarkovModelDiffSM
This class implements a AbstractDifferentiableStatisticalModel for an inhomogeneous Markov model. |
Uses of DifferentiableSequenceScore in de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous that implement DifferentiableSequenceScore | |
---|---|
class |
HomogeneousDiffSM
This is the main class for all homogeneous DifferentiableSequenceScore s. |
class |
HomogeneousMM0DiffSM
This scoring function implements a homogeneous Markov model of order zero (hMM(0)) for a fixed sequence length. |
class |
HomogeneousMMDiffSM
This scoring function implements a homogeneous Markov model of arbitrary order for any sequence length. |
class |
UniformHomogeneousDiffSM
This scoring function does nothing. |
Uses of DifferentiableSequenceScore in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture that implement DifferentiableSequenceScore | |
---|---|
class |
AbstractMixtureDiffSM
This main abstract class for any mixture scoring function (e.g. |
class |
MixtureDiffSM
This class implements a real mixture model. |
class |
StrandDiffSM
This class enables the user to search on both strand. |
class |
VariableLengthMixtureDiffSM
This class implements a mixture of VariableLengthDiffSM by extending MixtureDiffSM and implementing the methods of VariableLengthDiffSM . |
Uses of DifferentiableSequenceScore in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif that implement DifferentiableSequenceScore | |
---|---|
class |
DurationDiffSM
This class is the super class for all one dimensional position scoring functions that can be used as durations for semi Markov models. |
class |
ExtendedZOOPSDiffSM
This class handles mixtures with at least one hidden motif. |
class |
MixtureDurationDiffSM
This class implements a mixture of DurationDiffSM s. |
class |
PositionDiffSM
This class implements a position scoring function that enables the user to get a score without using a Sequence object. |
class |
SkewNormalLikeDurationDiffSM
This class implements a skew normal like discrete truncated distribution. |
class |
UniformDurationDiffSM
This scoring function implements a uniform distribution for positions. |
Uses of DifferentiableSequenceScore in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models that implement DifferentiableSequenceScore | |
---|---|
class |
DifferentiableHigherOrderHMM
This class combines an HigherOrderHMM and a DifferentiableStatisticalModel by implementing some of the declared methods. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |