|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |
Packages that use InstantiableFromParameterSet | |
---|---|
de.jstacs | This package is the root package for the most and important packages. |
de.jstacs.algorithms.optimization.termination | Provides classes for termination conditions that can be used in algorithms |
de.jstacs.data | Provides classes for the representation of data. |
de.jstacs.data.alphabets | Provides classes for the representation of discrete and continuous alphabets, including a DNAAlphabet for the most common case of DNA-sequences |
de.jstacs.io | Provides classes for reading data from and writing to a file and storing a number of datatypes, including all primitives, arrays of primitives, and Storable s to an XML-representation |
de.jstacs.parameters | This package provides classes for parameters that establish a general convention for the description of parameters
as defined in the Parameter -interface. |
de.jstacs.sampling | This package contains many classes that can be used while a sampling. |
de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels | Provides DifferentiableStatisticalModel s that are directed graphical models. |
de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures | Provides the facilities to learn the structure of a BayesianNetworkDiffSM . |
de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures | Provides the facilities to learn the structure of a BayesianNetworkDiffSM as
a Bayesian tree using a number of measures to define a rating of structures |
de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures | Provides the facilities to learn the structure of a BayesianNetworkDiffSM as
a permuted Markov model using a number of measures to define a rating of structures |
de.jstacs.sequenceScores.statisticalModels.trainable.discrete | |
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous | |
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous | This package contains various inhomogeneous models. |
de.jstacs.utils | This package contains a bundle of useful classes and interfaces like ... |
Uses of InstantiableFromParameterSet in de.jstacs |
---|
Methods in de.jstacs that return types with arguments of type InstantiableFromParameterSet | |
---|---|
InstanceParameterSet<? extends InstantiableFromParameterSet> |
InstantiableFromParameterSet.getCurrentParameterSet()
Returns the InstanceParameterSet that has been used to
instantiate the current instance of the implementing class. |
Uses of InstantiableFromParameterSet in de.jstacs.algorithms.optimization.termination |
---|
Subinterfaces of InstantiableFromParameterSet in de.jstacs.algorithms.optimization.termination | |
---|---|
interface |
TerminationCondition
This interface can be used in any iterative algorithm for determining the end of the algorithm. |
Classes in de.jstacs.algorithms.optimization.termination that implement InstantiableFromParameterSet | |
---|---|
class |
AbsoluteValueCondition
Deprecated. use of the absolute value condition is not recommended and it may be removed in future releases |
class |
AbstractTerminationCondition
This class is the abstract super class of many TerminationCondition s. |
class |
CombinedCondition
This class allows to use many TerminationCondition s at once. |
class |
IterationCondition
This class will stop an optimization if the number of iteration reaches a given number. |
class |
SmallDifferenceOfFunctionEvaluationsCondition
This class implements a TerminationCondition that stops an optimization
if the difference of the current and the last function evaluations will be small, i.e.,
![]() |
class |
SmallGradientConditon
This class implements a TerminationCondition that allows no further iteration in an optimization if the
the gradient becomes small, i.e.,
![]() |
class |
SmallStepCondition
This class implements a TerminationCondition that allows no further iteration in an optimization if the
scalar product of the current and the last values of x will be small, i.e.,
![]() |
class |
TimeCondition
This class implements a TerminationCondition that stops the optimization if the elapsed time in seconds is
greater than a given value. |
Uses of InstantiableFromParameterSet in de.jstacs.data |
---|
Classes in de.jstacs.data that implement InstantiableFromParameterSet | |
---|---|
class |
AlphabetContainer
The container for Alphabet s used in a Sequence ,
DataSet , AbstractTrainableStatisticalModel or ... . |
Uses of InstantiableFromParameterSet in de.jstacs.data.alphabets |
---|
Classes in de.jstacs.data.alphabets that implement InstantiableFromParameterSet | |
---|---|
class |
Alphabet
Class for a set of symbols, i.e. an Alphabet . |
class |
ComplementableDiscreteAlphabet
This abstract class indicates that an alphabet can be used to compute the complement. |
class |
ContinuousAlphabet
Class for a continuous alphabet. |
class |
DiscreteAlphabet
Class for an alphabet that consists of arbitrary String s. |
class |
DNAAlphabet
This class implements the discrete alphabet that is used for DNA. |
class |
DNAAlphabetContainer
This class implements a singleton for an AlphabetContainer that can be used for DNA. |
class |
GenericComplementableDiscreteAlphabet
This class implements an generic complementable discrete alphabet. |
class |
ProteinAlphabet
This class implements the discrete alphabet that is used for proteins (one letter code). |
Uses of InstantiableFromParameterSet in de.jstacs.io |
---|
Methods in de.jstacs.io with type parameters of type InstantiableFromParameterSet | ||
---|---|---|
static
|
ParameterSetParser.getInstanceFromParameterSet(InstanceParameterSet<T> pars)
Returns an instance of a subclass of InstantiableFromParameterSet
that can be instantiated by the InstanceParameterSet
pars . |
|
static
|
ParameterSetParser.getInstanceFromParameterSet(ParameterSet pars,
Class<T> instanceClass)
Returns an instance of a subclass of InstantiableFromParameterSet
that can be instantiated by the ParameterSet pars . |
Uses of InstantiableFromParameterSet in de.jstacs.parameters |
---|
Classes in de.jstacs.parameters with type parameters of type InstantiableFromParameterSet | |
---|---|
class |
InstanceParameterSet<T extends InstantiableFromParameterSet>
Container class for a set of Parameter s that can be used to
instantiate another class. |
class |
SequenceScoringParameterSet<T extends InstantiableFromParameterSet>
Abstract class for a ParameterSet containing all parameters necessary
to construct an Object that implements
InstantiableFromParameterSet . |
Uses of InstantiableFromParameterSet in de.jstacs.sampling |
---|
Classes in de.jstacs.sampling that implement InstantiableFromParameterSet | |
---|---|
class |
AbstractBurnInTest
This abstract class implements some of the methods of BurnInTest to
alleviate the implementation of efficient and new burn-in tests. |
class |
VarianceRatioBurnInTest
In this class the Variance-Ratio method of Gelman and Rubin is implemented to test the length of the burn-in phase of a multi-chain Gibbs Sampling (number of chains >2). |
Uses of InstantiableFromParameterSet in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels that implement InstantiableFromParameterSet | |
---|---|
class |
BayesianNetworkDiffSM
This class implements a scoring function that is a moral directed graphical model, i.e. a moral Bayesian network. |
class |
MarkovModelDiffSM
This class implements a AbstractDifferentiableStatisticalModel for an inhomogeneous Markov model. |
Uses of InstantiableFromParameterSet in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures that implement InstantiableFromParameterSet | |
---|---|
class |
InhomogeneousMarkov
Class for a network structure of a BayesianNetworkDiffSM
that is an inhomogeneous Markov model. |
class |
Measure
Class for structure measures that derive an optimal structure with respect to some criterion within a class of possible structures from data. |
Uses of InstantiableFromParameterSet in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures that implement InstantiableFromParameterSet | |
---|---|
class |
BTExplainingAwayResidual
Structure learning Measure that computes a maximum spanning tree
based on the explaining away residual and uses the resulting tree structure
as structure of a Bayesian tree (special case of a Bayesian network) in a
BayesianNetworkDiffSM
. |
class |
BTMutualInformation
Structure learning Measure that computes a maximum spanning tree
based on mutual information and uses the resulting tree structure as
structure of a Bayesian tree (special case of a Bayesian network) in a
BayesianNetworkDiffSM
. |
Uses of InstantiableFromParameterSet in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures that implement InstantiableFromParameterSet | |
---|---|
class |
PMMExplainingAwayResidual
Class for the network structure of a BayesianNetworkDiffSM
that is a permuted Markov model based on the explaining away residual. |
class |
PMMMutualInformation
Class for the network structure of a BayesianNetworkDiffSM
that is a permuted Markov model based on mutual information. |
Uses of InstantiableFromParameterSet in de.jstacs.sequenceScores.statisticalModels.trainable.discrete |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.trainable.discrete that implement InstantiableFromParameterSet | |
---|---|
class |
DiscreteGraphicalTrainSM
This is the main class for all discrete graphical models (DGM). |
Uses of InstantiableFromParameterSet in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous that implement InstantiableFromParameterSet | |
---|---|
class |
HomogeneousMM
This class implements homogeneous Markov models (hMM) of arbitrary order. |
class |
HomogeneousTrainSM
This class implements homogeneous models of arbitrary order. |
Uses of InstantiableFromParameterSet in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous that implement InstantiableFromParameterSet | |
---|---|
class |
BayesianNetworkTrainSM
The class implements a Bayesian network ( StructureLearner.ModelType.BN ) of fixed order. |
class |
DAGTrainSM
The abstract class for directed acyclic graphical models ( DAGTrainSM ). |
class |
FSDAGModelForGibbsSampling
This is the class for a fixed structure directed acyclic graphical model (see FSDAGTrainSM ) that can be used in a Gibbs sampling. |
class |
FSDAGTrainSM
This class can be used for any discrete fixed structure directed acyclic graphical model ( FSDAGTrainSM ). |
class |
InhomogeneousDGTrainSM
This class is the main class for all inhomogeneous discrete graphical models ( InhomogeneousDGTrainSM ). |
Uses of InstantiableFromParameterSet in de.jstacs.utils |
---|
Method parameters in de.jstacs.utils with type arguments of type InstantiableFromParameterSet | |
---|---|
static LinkedList<Class<? extends InstanceParameterSet>> |
SubclassFinder.getParameterSetFor(Class<? extends InstantiableFromParameterSet> clazz)
Returns a LinkedList of the classes of the
InstanceParameterSet s that can be used to instantiate the
sub-class of InstantiableFromParameterSet that is given by
clazz |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |