|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |
Packages that use NormalizableScoringFunction | |
---|---|
de.jstacs.classifier.scoringFunctionBased.gendismix | Provides an implementation of a classifier that allows to train the parameters of a set of NormalizableScoringFunction s by
a unified generative-discriminative learning principle |
de.jstacs.classifier.scoringFunctionBased.logPrior | Provides a general definition of a parameter log-prior and a number of implementations of Laplace and Gaussian priors |
de.jstacs.models | Provides the interface Model and its abstract implementation AbstractModel , which is the super class of all other models. |
de.jstacs.models.hmm.models | The package provides different implementations of hidden Markov models based on AbstractHMM |
de.jstacs.scoringFunctions | Provides ScoringFunction s that can be used in a ScoreClassifier . |
de.jstacs.scoringFunctions.directedGraphicalModels | Provides ScoringFunction s that are equivalent to directed graphical models. |
de.jstacs.scoringFunctions.homogeneous | Provides ScoringFunction s that are homogeneous, i.e. model probabilities or scores independent of the position within a sequence |
de.jstacs.scoringFunctions.mix | Provides ScoringFunction s that are mixtures of other ScoringFunction s. |
de.jstacs.scoringFunctions.mix.motifSearch |
Uses of NormalizableScoringFunction in de.jstacs.classifier.scoringFunctionBased.gendismix |
---|
Methods in de.jstacs.classifier.scoringFunctionBased.gendismix with parameters of type NormalizableScoringFunction | |
---|---|
static GenDisMixClassifier[] |
GenDisMixClassifier.create(GenDisMixClassifierParameterSet params,
LogPrior prior,
double[] weights,
NormalizableScoringFunction[]... functions)
This method creates an array of GenDisMixClassifiers by using the cross-product of the given NormalizableScoringFunctions. |
Constructors in de.jstacs.classifier.scoringFunctionBased.gendismix with parameters of type NormalizableScoringFunction | |
---|---|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double[] beta,
NormalizableScoringFunction... score)
The main constructor. |
|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double lastScore,
double[] beta,
NormalizableScoringFunction... score)
This constructor creates an instance and sets the value of the last (external) optimization. |
|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double genBeta,
double disBeta,
double priorBeta,
NormalizableScoringFunction... score)
This convenience constructor agglomerates the genBeta, disBeta, and priorBeta into an array and calls the main constructor. |
|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
LearningPrinciple key,
NormalizableScoringFunction... score)
This convenience constructor creates an array of weights for an elementary learning principle and calls the main constructor. |
Uses of NormalizableScoringFunction in de.jstacs.classifier.scoringFunctionBased.logPrior |
---|
Fields in de.jstacs.classifier.scoringFunctionBased.logPrior declared as NormalizableScoringFunction | |
---|---|
protected NormalizableScoringFunction[] |
SeparateLogPrior.funs
The ScoringFunction s using the parameters that shall be
penalized. |
Uses of NormalizableScoringFunction in de.jstacs.models |
---|
Fields in de.jstacs.models declared as NormalizableScoringFunction | |
---|---|
protected NormalizableScoringFunction |
NormalizableScoringFunctionModel.nsf
The internally used NormalizableScoringFunction . |
Methods in de.jstacs.models that return NormalizableScoringFunction | |
---|---|
NormalizableScoringFunction |
NormalizableScoringFunctionModel.getFunction()
Returns a copy of the internally used NormalizableScoringFunction . |
Constructors in de.jstacs.models with parameters of type NormalizableScoringFunction | |
---|---|
NormalizableScoringFunctionModel(NormalizableScoringFunction nsf,
int threads,
byte algo,
AbstractTerminationCondition tc,
double lineps,
double startD)
The main constructor that creates an instance with the user given parameters. |
Uses of NormalizableScoringFunction in de.jstacs.models.hmm.models |
---|
Classes in de.jstacs.models.hmm.models that implement NormalizableScoringFunction | |
---|---|
class |
DifferentiableHigherOrderHMM
This class combines an HigherOrderHMM and a NormalizableScoringFunction by implementing some of the declared methods. |
Uses of NormalizableScoringFunction in de.jstacs.scoringFunctions |
---|
Subinterfaces of NormalizableScoringFunction in de.jstacs.scoringFunctions | |
---|---|
interface |
SamplingScoringFunction
Interface for NormalizableScoringFunction s that can be used for
Metropolis-Hastings sampling in a SamplingScoreBasedClassifier . |
interface |
VariableLengthScoringFunction
This is an interface for all NormalizableScoringFunction s that allow to score
subsequences of arbitrary length. |
Classes in de.jstacs.scoringFunctions that implement NormalizableScoringFunction | |
---|---|
class |
AbstractNormalizableScoringFunction
This class is the main part of any ScoreClassifier . |
class |
AbstractVariableLengthScoringFunction
This abstract class implements some methods declared in NormalizableScoringFunction based on the declaration
of methods in VariableLengthScoringFunction . |
class |
CMMScoringFunction
This scoring function implements a cyclic Markov model of arbitrary order and periodicity for any sequence length. |
class |
IndependentProductScoringFunction
This class enables the user to model parts of a sequence independent of each other. |
class |
MappingScoringFunction
This class implements a NormalizableScoringFunction that works on
mapped Sequence s. |
class |
MRFScoringFunction
This class implements the scoring function for any MRF (Markov Random Field). |
class |
NormalizedScoringFunction
This class makes an unnormalized NormalizableScoringFunction to a normalized NormalizableScoringFunction . |
class |
UniformScoringFunction
This ScoringFunction does nothing. |
Methods in de.jstacs.scoringFunctions that return NormalizableScoringFunction | |
---|---|
NormalizableScoringFunction |
NormalizedScoringFunction.getFunction()
This method returns the internal function. |
NormalizableScoringFunction |
MappingScoringFunction.getFunction()
This method return the internal function. |
NormalizableScoringFunction[] |
IndependentProductScoringFunction.getFunctions()
This method returns a deep copy of the internally used NormalizableScoringFunction . |
static NormalizableScoringFunction |
NormalizedScoringFunction.getNormalizedVersion(NormalizableScoringFunction nsf,
int starts)
This method returns a normalized version of a NormalizableScoringFunction. |
Methods in de.jstacs.scoringFunctions with parameters of type NormalizableScoringFunction | |
---|---|
static NormalizableScoringFunction |
NormalizedScoringFunction.getNormalizedVersion(NormalizableScoringFunction nsf,
int starts)
This method returns a normalized version of a NormalizableScoringFunction. |
static boolean |
AbstractNormalizableScoringFunction.isNormalized(NormalizableScoringFunction... function)
This method checks whether all given NormalizableScoringFunction s
are normalized. |
Constructors in de.jstacs.scoringFunctions with parameters of type NormalizableScoringFunction | |
---|---|
IndependentProductScoringFunction(double ess,
boolean plugIn,
NormalizableScoringFunction... functions)
This constructor creates an instance of an IndependentProductScoringFunction from a given series of
independent NormalizableScoringFunction s. |
|
IndependentProductScoringFunction(double ess,
boolean plugIn,
NormalizableScoringFunction[] functions,
int[] length)
This constructor creates an instance of an IndependentProductScoringFunction from given series of
independent NormalizableScoringFunction s and lengths. |
|
IndependentProductScoringFunction(double ess,
boolean plugIn,
NormalizableScoringFunction[] functions,
int[] index,
int[] length,
boolean[] reverse)
This is the main constructor. |
|
MappingScoringFunction(AlphabetContainer originalAlphabetContainer,
NormalizableScoringFunction nsf,
DiscreteAlphabetMapping... mapping)
The main constructor creating a MappingScoringFunction . |
|
NormalizedScoringFunction(NormalizableScoringFunction nsf,
int starts)
Creates a new instance using a given NormalizableScoringFunction. |
Uses of NormalizableScoringFunction in de.jstacs.scoringFunctions.directedGraphicalModels |
---|
Classes in de.jstacs.scoringFunctions.directedGraphicalModels that implement NormalizableScoringFunction | |
---|---|
class |
BayesianNetworkScoringFunction
This class implements a scoring function that is a moral directed graphical model, i.e. a moral Bayesian network. |
class |
MutableMarkovModelScoringFunction
This class implements a AbstractNormalizableScoringFunction for an inhomogeneous Markov model. |
Uses of NormalizableScoringFunction in de.jstacs.scoringFunctions.homogeneous |
---|
Classes in de.jstacs.scoringFunctions.homogeneous that implement NormalizableScoringFunction | |
---|---|
class |
HMM0ScoringFunction
This scoring function implements a homogeneous Markov model of order zero (hMM(0)) for a fixed sequence length. |
class |
HMMScoringFunction
This scoring function implements a homogeneous Markov model of arbitrary order for any sequence length. |
class |
HomogeneousScoringFunction
This is the main class for all homogeneous ScoringFunction s. |
class |
UniformHomogeneousScoringFunction
This scoring function does nothing. |
Uses of NormalizableScoringFunction in de.jstacs.scoringFunctions.mix |
---|
Classes in de.jstacs.scoringFunctions.mix that implement NormalizableScoringFunction | |
---|---|
class |
AbstractMixtureScoringFunction
This main abstract class for any mixture scoring function (e.g. |
class |
MixtureScoringFunction
This class implements a real mixture model. |
class |
StrandScoringFunction
This class enables the user to search on both strand. |
class |
VariableLengthMixtureScoringFunction
This class implements a mixture of VariableLengthScoringFunction by extending MixtureScoringFunction and implementing the methods of VariableLengthScoringFunction . |
Fields in de.jstacs.scoringFunctions.mix declared as NormalizableScoringFunction | |
---|---|
protected NormalizableScoringFunction[] |
AbstractMixtureScoringFunction.function
This array contains the internal ScoringFunction s that are used to
determine the score. |
Methods in de.jstacs.scoringFunctions.mix that return NormalizableScoringFunction | |
---|---|
NormalizableScoringFunction |
AbstractMixtureScoringFunction.getFunction(int index)
This method returns a specific internal function. |
NormalizableScoringFunction[] |
AbstractMixtureScoringFunction.getFunctions()
This method returns an array of clones of the internal used functions. |
NormalizableScoringFunction[] |
AbstractMixtureScoringFunction.getScoringFunctions()
Returns a deep copy of all internal used ScoringFunction s. |
Methods in de.jstacs.scoringFunctions.mix with parameters of type NormalizableScoringFunction | |
---|---|
protected void |
AbstractMixtureScoringFunction.cloneFunctions(NormalizableScoringFunction[] originalFunctions)
This method clones the given array of functions and enables the user to do some post-processing. |
static boolean |
StrandScoringFunction.isStrandScoringFunction(NormalizableScoringFunction nsf)
Check whether a NormalizableScoringFunction is a StrandScoringFunction . |
Constructors in de.jstacs.scoringFunctions.mix with parameters of type NormalizableScoringFunction | |
---|---|
AbstractMixtureScoringFunction(int length,
int starts,
int dimension,
boolean optimizeHidden,
boolean plugIn,
NormalizableScoringFunction... function)
This constructor creates a new AbstractMixtureScoringFunction . |
|
MixtureScoringFunction(int starts,
boolean plugIn,
NormalizableScoringFunction... component)
This constructor creates a new MixtureScoringFunction . |
|
StrandScoringFunction(NormalizableScoringFunction function,
double forwardPartOfESS,
int starts,
boolean plugIn,
StrandScoringFunction.InitMethod initMethod)
This constructor creates a StrandScoringFunction that optimizes the usage of each strand. |
|
StrandScoringFunction(NormalizableScoringFunction function,
int starts,
boolean plugIn,
StrandScoringFunction.InitMethod initMethod,
double forward)
This constructor creates a StrandScoringFunction that has a fixed frequency for the strand usage. |
Uses of NormalizableScoringFunction in de.jstacs.scoringFunctions.mix.motifSearch |
---|
Classes in de.jstacs.scoringFunctions.mix.motifSearch that implement NormalizableScoringFunction | |
---|---|
class |
DurationScoringFunction
This class is the super class for all one dimensional position scoring functions that can be used as durations for semi Markov models. |
class |
HiddenMotifsMixture
This class handles mixtures with at least one hidden motif. |
class |
MixtureDuration
This class implements a mixture of DurationScoringFunction s. |
class |
PositionScoringFunction
This class implements a position scoring function that enables the user to get a score without using a Sequence object. |
class |
SkewNormalLikeScoringFunction
This class implements a skew normal like discrete truncated distribution. |
class |
UniformDurationScoringFunction
This scoring function implements a uniform distribution for positions. |
Constructors in de.jstacs.scoringFunctions.mix.motifSearch with parameters of type NormalizableScoringFunction | |
---|---|
HiddenMotifsMixture(boolean type,
int length,
int starts,
boolean plugIn,
HomogeneousScoringFunction bg,
NormalizableScoringFunction[] motif,
DurationScoringFunction[] posPrior,
boolean plugInBg)
This constructor creates an instance of HiddenMotifsMixture that allows to have one site of the specified motifs in a Sequence . |
|
HiddenMotifsMixture(boolean type,
int length,
int starts,
boolean plugIn,
HomogeneousScoringFunction bg,
NormalizableScoringFunction motif,
DurationScoringFunction posPrior,
boolean plugInBg)
This constructor creates an instance of HiddenMotifsMixture that is either an OOPS or a ZOOPS model depending on the chosen type . |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |