|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectde.jstacs.scoringFunctions.AbstractNormalizableScoringFunction
de.jstacs.scoringFunctions.NormalizedScoringFunction
public final class NormalizedScoringFunction
This class makes an unnormalized NormalizableScoringFunction
to a normalized NormalizableScoringFunction
.
However, the class allows to use only NormalizableScoringFunction
that do not implement VariableLengthScoringFunction
.
This class should be used only in cases when it is not possible to avoid its usage.
Field Summary |
---|
Fields inherited from class de.jstacs.scoringFunctions.AbstractNormalizableScoringFunction |
---|
alphabets, length, r |
Fields inherited from interface de.jstacs.scoringFunctions.ScoringFunction |
---|
UNKNOWN |
Constructor Summary | |
---|---|
NormalizedScoringFunction(NormalizableScoringFunction nsf,
int starts)
Creates a new instance using a given NormalizableScoringFunction. |
|
NormalizedScoringFunction(StringBuffer xml)
This is the constructor for Storable . |
Method Summary | |
---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of NormalizableScoringFunction.getLogPriorTerm() for each
parameter of this model. |
NormalizedScoringFunction |
clone()
Creates a clone (deep copy) of the current ScoringFunction
instance. |
protected void |
fromXML(StringBuffer xml)
This method is called in the constructor for the Storable
interface to create a scoring function from a StringBuffer . |
double[] |
getCurrentParameterValues()
Returns a double array of dimension
ScoringFunction.getNumberOfParameters() containing the current parameter values. |
double |
getEss()
Returns the equivalent sample size (ess) of this model, i.e. the equivalent sample size for the class or component that is represented by this model. |
NormalizableScoringFunction |
getFunction()
This method returns the internal function. |
String |
getInstanceName()
Returns a short instance name. |
double |
getLogNormalizationConstant()
Returns the logarithm of the sum of the scores over all sequences of the event space. |
double |
getLogPartialNormalizationConstant(int parameterIndex)
Returns the logarithm of the partial normalization constant for the parameter with index parameterIndex . |
double |
getLogPriorTerm()
This method computes a value that is proportional to
where prior is the prior for the parameters of this model. |
double |
getLogScore(Sequence seq,
int start)
Returns the logarithmic score for the Sequence seq
beginning at position start in the Sequence . |
double |
getLogScoreAndPartialDerivation(Sequence seq,
int start,
IntList indices,
DoubleList partialDer)
Returns the logarithmic score for a Sequence beginning at
position start in the Sequence and fills lists with
the indices and the partial derivations. |
static NormalizableScoringFunction |
getNormalizedVersion(NormalizableScoringFunction nsf,
int starts)
This method returns a normalized version of a NormalizableScoringFunction. |
int |
getNumberOfParameters()
Returns the number of parameters in this ScoringFunction . |
int |
getNumberOfRecommendedStarts()
This method returns the number of recommended optimization starts. |
int |
getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
Returns the size of the event space of the random variables that are affected by parameter no. |
StrandedLocatedSequenceAnnotationWithLength.Strand |
getStrand(Sequence seq,
int startPos)
This method return the preferred StrandedLocatedSequenceAnnotationWithLength.Strand for a Sequence beginning at startPos . |
void |
initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
This method creates the underlying structure of the ScoringFunction . |
void |
initializeFunctionRandomly(boolean freeParams)
This method initializes the ScoringFunction randomly. |
void |
initializeHiddenUniformly()
This method initializes the hidden parameters of the internal NormalizableScoringFunction uniformly if it is a AbstractMixtureScoringFunction . |
boolean |
isInitialized()
This method can be used to determine whether the model is initialized. |
boolean |
isNormalized()
This method indicates whether the implemented score is already normalized to 1 or not. |
boolean |
isStrandScoringFunction()
This method returns true if the internal NormalizableScoringFunction is a StrandScoringFunction otherwise false . |
boolean |
modify(int offsetLeft,
int offsetRight)
Manually modifies the model. |
void |
setParameters(double[] params,
int start)
This method sets the internal parameters to the values of params between start and
start + |
String |
toString()
|
StringBuffer |
toXML()
This method returns an XML representation as StringBuffer of an
instance of the implementing class. |
Methods inherited from class de.jstacs.scoringFunctions.AbstractNormalizableScoringFunction |
---|
getAlphabetContainer, getInitialClassParam, getLength, getLogScore, getLogScoreAndPartialDerivation, getNumberOfStarts, isNormalized |
Methods inherited from class java.lang.Object |
---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Constructor Detail |
---|
public NormalizedScoringFunction(NormalizableScoringFunction nsf, int starts) throws Exception
nsf
- the function to be used internalstarts
- the number of recommended starts (ScoringFunction.getNumberOfRecommendedStarts()
)
Exception
- is nsf
could not be cloned or some error occurred during computation of some valuespublic NormalizedScoringFunction(StringBuffer xml) throws NonParsableException
Storable
.
xml
- the xml representation
NonParsableException
- if the representation could not be parsed.Method Detail |
---|
public static final NormalizableScoringFunction getNormalizedVersion(NormalizableScoringFunction nsf, int starts) throws Exception
nsf
or an instance of NormalizedScoringFunction using nsf
and starts
.
nsf
- the NormalizableScoringFunction to be normalizedstarts
- the number of recommended starts for a NormalizedScoringFunction
Exception
- if nsf
could not be clonedpublic NormalizedScoringFunction clone() throws CloneNotSupportedException
ScoringFunction
ScoringFunction
instance.
clone
in interface ScoringFunction
clone
in class AbstractNormalizableScoringFunction
ScoringFunction
CloneNotSupportedException
- if something went wrong while cloning the
ScoringFunction
public int getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
NormalizableScoringFunction
index
, i.e. the product of the
sizes of the alphabets at the position of each random variable affected
by parameter index
. For DNA alphabets this corresponds to 4
for a PWM, 16 for a WAM except position 0, ...
getSizeOfEventSpaceForRandomVariablesOfParameter
in interface NormalizableScoringFunction
index
- the index of the parameter
public double getLogNormalizationConstant()
NormalizableScoringFunction
getLogNormalizationConstant
in interface NormalizableScoringFunction
public double getLogPartialNormalizationConstant(int parameterIndex) throws Exception
NormalizableScoringFunction
parameterIndex
. This is the logarithm of the partial derivation of the
normalization constant for the parameter with index
parameterIndex
,
getLogPartialNormalizationConstant
in interface NormalizableScoringFunction
parameterIndex
- the index of the parameter
Exception
- if something went wrong with the normalizationNormalizableScoringFunction.getLogNormalizationConstant()
public double getEss()
NormalizableScoringFunction
getEss
in interface NormalizableScoringFunction
public double getLogPriorTerm()
NormalizableScoringFunction
NormalizableScoringFunction.getEss()
* NormalizableScoringFunction.getLogNormalizationConstant()
+ Math.log( prior )
prior
is the prior for the parameters of this model.
getLogPriorTerm
in interface NormalizableScoringFunction
NormalizableScoringFunction.getEss()
* NormalizableScoringFunction.getLogNormalizationConstant()
+ Math.log( prior ).
NormalizableScoringFunction.getEss()
,
NormalizableScoringFunction.getLogNormalizationConstant()
public void addGradientOfLogPriorTerm(double[] grad, int start) throws Exception
NormalizableScoringFunction
NormalizableScoringFunction.getLogPriorTerm()
for each
parameter of this model. The results are added to the array
grad
beginning at index start
.
addGradientOfLogPriorTerm
in interface NormalizableScoringFunction
grad
- the array of gradientsstart
- the start index in the grad
array, where the
partial derivations for the parameters of this models shall be
entered
Exception
- if something went wrong with the computing of the gradientsNormalizableScoringFunction.getLogPriorTerm()
public void initializeFunction(int index, boolean freeParams, Sample[] data, double[][] weights) throws Exception
ScoringFunction
ScoringFunction
.
initializeFunction
in interface ScoringFunction
index
- the index of the class the ScoringFunction
modelsfreeParams
- indicates whether the (reduced) parameterization is useddata
- the samplesweights
- the weights of the sequences in the samples
Exception
- if something went wrongpublic void initializeFunctionRandomly(boolean freeParams) throws Exception
ScoringFunction
ScoringFunction
randomly. It has to
create the underlying structure of the ScoringFunction
.
initializeFunctionRandomly
in interface ScoringFunction
freeParams
- indicates whether the (reduced) parameterization is used
Exception
- if something went wrongprotected void fromXML(StringBuffer xml) throws NonParsableException
AbstractNormalizableScoringFunction
Storable
interface to create a scoring function from a StringBuffer
.
fromXML
in class AbstractNormalizableScoringFunction
xml
- the XML representation as StringBuffer
NonParsableException
- if the StringBuffer
could not be parsedAbstractNormalizableScoringFunction.AbstractNormalizableScoringFunction(StringBuffer)
public String getInstanceName()
ScoringFunction
getInstanceName
in interface ScoringFunction
public double getLogScore(Sequence seq, int start)
ScoringFunction
Sequence
seq
beginning at position start
in the Sequence
.
getLogScore
in interface ScoringFunction
seq
- the Sequence
start
- the start position in the Sequence
Sequence
public double getLogScoreAndPartialDerivation(Sequence seq, int start, IntList indices, DoubleList partialDer)
ScoringFunction
Sequence
beginning at
position start
in the Sequence
and fills lists with
the indices and the partial derivations.
getLogScoreAndPartialDerivation
in interface ScoringFunction
seq
- the Sequence
start
- the start position in the Sequence
indices
- an IntList
of indices, after method invocation the
list should contain the indices i where
partialDer
- a DoubleList
of partial derivations, after method
invocation the list should contain the corresponding
Sequence
public int getNumberOfParameters()
ScoringFunction
ScoringFunction
. If the
number of parameters is not known yet, the method returns
ScoringFunction.UNKNOWN
.
getNumberOfParameters
in interface ScoringFunction
ScoringFunction
ScoringFunction.UNKNOWN
public double[] getCurrentParameterValues() throws Exception
ScoringFunction
double
array of dimension
ScoringFunction.getNumberOfParameters()
containing the current parameter values.
If one likes to use these parameters to start an optimization it is
highly recommended to invoke
ScoringFunction.initializeFunction(int, boolean, Sample[], double[][])
before.
After an optimization this method can be used to get the current
parameter values.
getCurrentParameterValues
in interface ScoringFunction
Exception
- if no parameters exist (yet)public void setParameters(double[] params, int start)
ScoringFunction
params
between start
and
start + ScoringFunction.getNumberOfParameters()
- 1
setParameters
in interface ScoringFunction
params
- the new parametersstart
- the start index in params
public boolean isInitialized()
ScoringFunction
ScoringFunction.initializeFunction(int, boolean, Sample[], double[][])
.
isInitialized
in interface ScoringFunction
true
if the model is initialized, false
otherwisepublic StringBuffer toXML()
Storable
StringBuffer
of an
instance of the implementing class.
toXML
in interface Storable
public int getNumberOfRecommendedStarts()
ScoringFunction
getNumberOfRecommendedStarts
in interface ScoringFunction
getNumberOfRecommendedStarts
in class AbstractNormalizableScoringFunction
public boolean isNormalized()
NormalizableScoringFunction
false
.
isNormalized
in interface NormalizableScoringFunction
isNormalized
in class AbstractNormalizableScoringFunction
true
if the implemented score is already normalized
to 1, false
otherwisepublic String toString()
toString
in class Object
public NormalizableScoringFunction getFunction() throws CloneNotSupportedException
CloneNotSupportedException
- if the internal function could not be clonedpublic boolean modify(int offsetLeft, int offsetRight)
Mutable
offsetLeft
and offsetRight
define how many positions the left or
right border positions shall be moved. Negative numbers indicate moves to
the left while positive numbers correspond to moves to the right.
modify
in interface Mutable
offsetLeft
- the offset on the left sideoffsetRight
- the offset on the right side
true
if the motif model was modified otherwise
false
public boolean isStrandScoringFunction()
true
if the internal NormalizableScoringFunction
is a StrandScoringFunction
otherwise false
.
true
if the internal NormalizableScoringFunction
is a StrandScoringFunction
otherwise false
public StrandedLocatedSequenceAnnotationWithLength.Strand getStrand(Sequence seq, int startPos)
StrandedLocatedSequenceAnnotationWithLength.Strand
for a Sequence
beginning at startPos
.
seq
- the sequencestartPos
- the start position
StrandedLocatedSequenceAnnotationWithLength.Strand
public void initializeHiddenUniformly()
NormalizableScoringFunction
uniformly if it is a AbstractMixtureScoringFunction
.
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |