|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectde.jstacs.scoringFunctions.AbstractNormalizableScoringFunction
de.jstacs.scoringFunctions.directedGraphicalModels.BayesianNetworkScoringFunction
public class BayesianNetworkScoringFunction
This class implements a scoring function that is a moral directed graphical
model, i.e. a moral Bayesian network. This implementation also comprises well
known specializations of Bayesian networks like Markov models of arbitrary
order (including weight array matrix models (WAM) and position weight
matrices (PWM)) or Bayesian trees. Different structures can be achieved by
using the corresponding Measure
, e.g. InhomogeneousMarkov
for
Markov models of arbitrary order.
This scoring function can be used in any
ScoreClassifier
, e.g. in a
MSPClassifier
to learn
the parameters of the ScoringFunction
using maximum conditional likelihood.
Field Summary | |
---|---|
protected double |
ess
The equivalent sample size. |
protected boolean |
isTrained
Indicates if the instance has been trained. |
protected Double |
logNormalizationConstant
Normalization constant to obtain normalized probabilities. |
protected Integer |
numFreePars
The number of free parameters. |
protected int[] |
nums
Used internally. |
protected int[][] |
order
The network structure, used internally. |
protected Parameter[] |
parameters
The parameters of the scoring function. |
protected boolean |
plugInParameters
Indicates if plug-in parameters, i.e. generative (MAP) parameters shall be used upon initialization. |
protected Measure |
structureMeasure
Measure that defines the network structure. |
protected ParameterTree[] |
trees
The trees that represent the context of the random variable (i.e. |
Fields inherited from class de.jstacs.scoringFunctions.AbstractNormalizableScoringFunction |
---|
alphabets, length, r |
Fields inherited from interface de.jstacs.scoringFunctions.ScoringFunction |
---|
UNKNOWN |
Constructor Summary | |
---|---|
BayesianNetworkScoringFunction(AlphabetContainer alphabet,
int length,
double ess,
boolean plugInParameters,
Measure structureMeasure)
Creates a new BayesianNetworkScoringFunction that has neither
been initialized nor trained. |
|
BayesianNetworkScoringFunction(BayesianNetworkScoringFunctionParameterSet parameters)
Creates a new BayesianNetworkScoringFunction that has neither
been initialized nor trained from a
BayesianNetworkScoringFunctionParameterSet . |
|
BayesianNetworkScoringFunction(StringBuffer xml)
The standard constructor for the interface Storable . |
Method Summary | |
---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of NormalizableScoringFunction.getLogPriorTerm() for each
parameter of this model. |
BayesianNetworkScoringFunction |
clone()
Creates a clone (deep copy) of the current ScoringFunction
instance. |
protected void |
createTrees(Sample[] data2,
double[][] weights2)
Creates the tree structures that represent the context (array trees ) and the parameter objects parameters using the
given Measure structureMeasure . |
protected void |
fromXML(StringBuffer source)
This method is called in the constructor for the Storable
interface to create a scoring function from a StringBuffer . |
InstanceParameterSet |
getCurrentParameterSet()
Returns the InstanceParameterSet that has been used to
instantiate the current instance of the implementing class. |
double[] |
getCurrentParameterValues()
Returns a double array of dimension
ScoringFunction.getNumberOfParameters() containing the current parameter values. |
double |
getEss()
Returns the equivalent sample size (ess) of this model, i.e. the equivalent sample size for the class or component that is represented by this model. |
String |
getInstanceName()
Returns a short instance name. |
double |
getLogNormalizationConstant()
Returns the logarithm of the sum of the scores over all sequences of the event space. |
double |
getLogPartialNormalizationConstant(int parameterIndex)
Returns the logarithm of the partial normalization constant for the parameter with index parameterIndex . |
double |
getLogPriorTerm()
This method computes a value that is proportional to
where prior is the prior for the parameters of this model. |
double |
getLogScore(Sequence seq,
int start)
Returns the logarithmic score for the Sequence seq
beginning at position start in the Sequence . |
double |
getLogScoreAndPartialDerivation(Sequence seq,
int start,
IntList indices,
DoubleList partialDer)
Returns the logarithmic score for a Sequence beginning at
position start in the Sequence and fills lists with
the indices and the partial derivations. |
int |
getNumberOfParameters()
Returns the number of parameters in this ScoringFunction . |
double[] |
getPositionDependentKMerProb(Sequence kmer)
Returns the probability of kmer for all possible positions in this BayesianNetworkScoringFunction starting at position kmer.getLength()-1 |
int |
getPositionForParameter(int index)
Returns the position in the sequence the parameter index is
responsible for. |
double[][] |
getPWM()
If this BayesianNetworkScoringFunction is a PWM, i.e. |
int |
getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
Returns the size of the event space of the random variables that are affected by parameter no. |
void |
initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
This method creates the underlying structure of the ScoringFunction . |
void |
initializeFunctionRandomly(boolean freeParams)
This method initializes the ScoringFunction randomly. |
boolean |
isInitialized()
This method can be used to determine whether the model is initialized. |
protected void |
precomputeNormalization()
Pre-computes all normalization constants. |
void |
setParameters(double[] params,
int start)
This method sets the internal parameters to the values of params between start and
start + |
protected void |
setPlugInParameters(int index,
boolean freeParameters,
Sample[] data,
double[][] weights)
Computes and sets the plug-in parameters (MAP estimated parameters) from data using weights . |
String |
toString()
|
StringBuffer |
toXML()
This method returns an XML representation as StringBuffer of an
instance of the implementing class. |
Methods inherited from class de.jstacs.scoringFunctions.AbstractNormalizableScoringFunction |
---|
getAlphabetContainer, getInitialClassParam, getLength, getLogScore, getLogScoreAndPartialDerivation, getNumberOfRecommendedStarts, getNumberOfStarts, isNormalized, isNormalized |
Methods inherited from class java.lang.Object |
---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Field Detail |
---|
protected Parameter[] parameters
protected ParameterTree[] trees
protected boolean isTrained
protected double ess
protected Integer numFreePars
protected int[] nums
protected Measure structureMeasure
Measure
that defines the network structure.
protected boolean plugInParameters
protected int[][] order
protected Double logNormalizationConstant
Constructor Detail |
---|
public BayesianNetworkScoringFunction(AlphabetContainer alphabet, int length, double ess, boolean plugInParameters, Measure structureMeasure) throws Exception
BayesianNetworkScoringFunction
that has neither
been initialized nor trained.
alphabet
- the alphabet of the scoring function boxed in an
AlphabetContainer
, e.g
new AlphabetContainer(new DNAAlphabet())
length
- the length of the scoring function, i.e. the length of the
sequences this scoring function can handleess
- the equivalent sample sizeplugInParameters
- indicates if plug-in parameters, i.e. generative (MAP)
parameters, shall be used upon initializationstructureMeasure
- the Measure
used for the structure, e.g.
InhomogeneousMarkov
Exception
- if the length of the scoring function is not admissible (<=0)
or the alphabet is not discretepublic BayesianNetworkScoringFunction(BayesianNetworkScoringFunctionParameterSet parameters) throws ParameterSetParser.NotInstantiableException, Exception
BayesianNetworkScoringFunction
that has neither
been initialized nor trained from a
BayesianNetworkScoringFunctionParameterSet
.
parameters
- the parameter set
ParameterSetParser.NotInstantiableException
- if the BayesianNetworkScoringFunction
could not be
instantiated from the
BayesianNetworkScoringFunctionParameterSet
Exception
- if the length of the scoring function is not admissible (<=0)
or the alphabet is not discretepublic BayesianNetworkScoringFunction(StringBuffer xml) throws NonParsableException
Storable
.
Recreates a BayesianNetworkScoringFunction
from its XML
representation as saved by the method toXML()
.
xml
- the XML representation as StringBuffer
NonParsableException
- if the XML code could not be parsedMethod Detail |
---|
public BayesianNetworkScoringFunction clone() throws CloneNotSupportedException
ScoringFunction
ScoringFunction
instance.
clone
in interface ScoringFunction
clone
in class AbstractNormalizableScoringFunction
ScoringFunction
CloneNotSupportedException
- if something went wrong while cloning the
ScoringFunction
public double getLogPartialNormalizationConstant(int parameterIndex) throws Exception
NormalizableScoringFunction
parameterIndex
. This is the logarithm of the partial derivation of the
normalization constant for the parameter with index
parameterIndex
,
getLogPartialNormalizationConstant
in interface NormalizableScoringFunction
parameterIndex
- the index of the parameter
Exception
- if something went wrong with the normalizationNormalizableScoringFunction.getLogNormalizationConstant()
public void initializeFunction(int index, boolean freeParams, Sample[] data, double[][] weights) throws Exception
ScoringFunction
ScoringFunction
.
initializeFunction
in interface ScoringFunction
index
- the index of the class the ScoringFunction
modelsfreeParams
- indicates whether the (reduced) parameterization is useddata
- the samplesweights
- the weights of the sequences in the samples
Exception
- if something went wrongprotected void createTrees(Sample[] data2, double[][] weights2) throws Exception
trees
) and the parameter objects parameters
using the
given Measure
structureMeasure
.
data2
- the data that is used to compute the structureweights2
- the weights on the sequences in data2
Exception
- if the structure is no moral graph or if the lengths of data
and scoring function do not match or other problems
concerning the data occurprotected void setPlugInParameters(int index, boolean freeParameters, Sample[] data, double[][] weights)
data
using weights
.
index
- the index of the class the scoring function is responsible
for, the parameters are estimated from
data[index]
and weights[index]
freeParameters
- indicates if only the free parameters or all parameters should
be used, this also affects the initializationdata
- the data used for initializationweights
- the weights on the dataprotected void fromXML(StringBuffer source) throws NonParsableException
AbstractNormalizableScoringFunction
Storable
interface to create a scoring function from a StringBuffer
.
fromXML
in class AbstractNormalizableScoringFunction
source
- the XML representation as StringBuffer
NonParsableException
- if the StringBuffer
could not be parsedAbstractNormalizableScoringFunction.AbstractNormalizableScoringFunction(StringBuffer)
public String toString()
toString
in class Object
public String getInstanceName()
ScoringFunction
getInstanceName
in interface ScoringFunction
public double getLogScore(Sequence seq, int start)
ScoringFunction
Sequence
seq
beginning at position start
in the Sequence
.
getLogScore
in interface ScoringFunction
seq
- the Sequence
start
- the start position in the Sequence
Sequence
public double getLogScoreAndPartialDerivation(Sequence seq, int start, IntList indices, DoubleList partialDer)
ScoringFunction
Sequence
beginning at
position start
in the Sequence
and fills lists with
the indices and the partial derivations.
getLogScoreAndPartialDerivation
in interface ScoringFunction
seq
- the Sequence
start
- the start position in the Sequence
indices
- an IntList
of indices, after method invocation the
list should contain the indices i where
partialDer
- a DoubleList
of partial derivations, after method
invocation the list should contain the corresponding
Sequence
public double getLogNormalizationConstant() throws RuntimeException
NormalizableScoringFunction
getLogNormalizationConstant
in interface NormalizableScoringFunction
RuntimeException
public int getNumberOfParameters()
ScoringFunction
ScoringFunction
. If the
number of parameters is not known yet, the method returns
ScoringFunction.UNKNOWN
.
getNumberOfParameters
in interface ScoringFunction
ScoringFunction
ScoringFunction.UNKNOWN
public void setParameters(double[] params, int start)
ScoringFunction
params
between start
and
start + ScoringFunction.getNumberOfParameters()
- 1
setParameters
in interface ScoringFunction
params
- the new parametersstart
- the start index in params
protected void precomputeNormalization()
public double[] getCurrentParameterValues() throws Exception
ScoringFunction
double
array of dimension
ScoringFunction.getNumberOfParameters()
containing the current parameter values.
If one likes to use these parameters to start an optimization it is
highly recommended to invoke
ScoringFunction.initializeFunction(int, boolean, Sample[], double[][])
before.
After an optimization this method can be used to get the current
parameter values.
getCurrentParameterValues
in interface ScoringFunction
Exception
- if no parameters exist (yet)public StringBuffer toXML()
Storable
StringBuffer
of an
instance of the implementing class.
toXML
in interface Storable
public double getLogPriorTerm()
NormalizableScoringFunction
NormalizableScoringFunction.getEss()
* NormalizableScoringFunction.getLogNormalizationConstant()
+ Math.log( prior )
prior
is the prior for the parameters of this model.
getLogPriorTerm
in interface NormalizableScoringFunction
NormalizableScoringFunction.getEss()
* NormalizableScoringFunction.getLogNormalizationConstant()
+ Math.log( prior ).
NormalizableScoringFunction.getEss()
,
NormalizableScoringFunction.getLogNormalizationConstant()
public void addGradientOfLogPriorTerm(double[] grad, int start)
NormalizableScoringFunction
NormalizableScoringFunction.getLogPriorTerm()
for each
parameter of this model. The results are added to the array
grad
beginning at index start
.
addGradientOfLogPriorTerm
in interface NormalizableScoringFunction
grad
- the array of gradientsstart
- the start index in the grad
array, where the
partial derivations for the parameters of this models shall be
enteredNormalizableScoringFunction.getLogPriorTerm()
public double getEss()
NormalizableScoringFunction
getEss
in interface NormalizableScoringFunction
public int getPositionForParameter(int index)
index
is
responsible for.
index
- the index of the parameter
public double[] getPositionDependentKMerProb(Sequence kmer) throws Exception
kmer
for all possible positions in this BayesianNetworkScoringFunction
starting at position kmer.getLength()-1.
- Parameters:
kmer
- the k-mer
- Returns:
- the position-dependent probabilities of this k-mer for position
kmer.getLength()-1 to AbstractNormalizableScoringFunction.getLength()
-1
Throws:
Exception
- if the method is called for non-Markov model structures
getSizeOfEventSpaceForRandomVariablesOfParameter
public int getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
- Description copied from interface:
NormalizableScoringFunction
- Returns the size of the event space of the random variables that are
affected by parameter no.
index
, i.e. the product of the
sizes of the alphabets at the position of each random variable affected
by parameter index
. For DNA alphabets this corresponds to 4
for a PWM, 16 for a WAM except position 0, ...
- Specified by:
getSizeOfEventSpaceForRandomVariablesOfParameter
in interface NormalizableScoringFunction
- Parameters:
index
- the index of the parameter
- Returns:
- the size of the event space
initializeFunctionRandomly
public void initializeFunctionRandomly(boolean freeParams)
throws Exception
- Description copied from interface:
ScoringFunction
- This method initializes the
ScoringFunction
randomly. It has to
create the underlying structure of the ScoringFunction
.
- Specified by:
initializeFunctionRandomly
in interface ScoringFunction
- Parameters:
freeParams
- indicates whether the (reduced) parameterization is used
- Throws:
Exception
- if something went wrong
isInitialized
public boolean isInitialized()
- Description copied from interface:
ScoringFunction
- This method can be used to determine whether the model is initialized. If
the model is not initialized you should invoke the method
ScoringFunction.initializeFunction(int, boolean, Sample[], double[][])
.
- Specified by:
isInitialized
in interface ScoringFunction
- Returns:
true
if the model is initialized, false
otherwise
getPWM
public double[][] getPWM()
throws Exception
- If this
BayesianNetworkScoringFunction
is a PWM, i.e.
structureMeasure
=new InhomogeneousMarkov
(0)}}, this
method returns the normalized PWM as a double
array of
dimension AbstractNormalizableScoringFunction.getLength()
x size-of-alphabet.
- Returns:
- the PWM as a two-dimensional array
- Throws:
Exception
- if this method is called for a
BayesianNetworkScoringFunction
that is not a PWM
getCurrentParameterSet
public InstanceParameterSet getCurrentParameterSet()
throws Exception
- Description copied from interface:
InstantiableFromParameterSet
- Returns the
InstanceParameterSet
that has been used to
instantiate the current instance of the implementing class. If the
current instance was not created using an InstanceParameterSet
,
an equivalent InstanceParameterSet
should be returned, so that an
instance created using this InstanceParameterSet
would be in
principle equal to the current instance.
- Specified by:
getCurrentParameterSet
in interface InstantiableFromParameterSet
- Returns:
- the current
InstanceParameterSet
- Throws:
Exception
- if the InstanceParameterSet
could not be returned
Overview
Package
Class
Use
Tree
Deprecated
Index
Help
PREV CLASS
NEXT CLASS
FRAMES
NO FRAMES
All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD
DETAIL: FIELD | CONSTR | METHOD