|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
public interface NormalizableScoringFunction
The interface for normalizable ScoringFunction
s.
Field Summary |
---|
Fields inherited from interface de.jstacs.scoringFunctions.ScoringFunction |
---|
UNKNOWN |
Method Summary | |
---|---|
void |
addGradientOfLogPriorTerm(double[] grad,
int start)
This method computes the gradient of getLogPriorTerm() for each
parameter of this model. |
double |
getEss()
Returns the equivalent sample size (ess) of this model, i.e. the equivalent sample size for the class or component that is represented by this model. |
double |
getInitialClassParam(double classProb)
Returns the initial class parameter for the class this ScoringFunction is responsible for, based on the class
probability classProb . |
double |
getLogNormalizationConstant()
Returns the logarithm of the sum of the scores over all sequences of the event space. |
double |
getLogPartialNormalizationConstant(int parameterIndex)
Returns the logarithm of the partial normalization constant for the parameter with index parameterIndex . |
double |
getLogPriorTerm()
This method computes a value that is proportional to
where prior is the prior for the parameters of this model. |
int |
getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
Returns the size of the event space of the random variables that are affected by parameter no. |
boolean |
isNormalized()
This method indicates whether the implemented score is already normalized to 1 or not. |
Methods inherited from interface de.jstacs.scoringFunctions.ScoringFunction |
---|
clone, getAlphabetContainer, getCurrentParameterValues, getInstanceName, getLength, getLogScore, getLogScore, getLogScoreAndPartialDerivation, getLogScoreAndPartialDerivation, getNumberOfParameters, getNumberOfRecommendedStarts, initializeFunction, initializeFunctionRandomly, isInitialized, setParameters |
Methods inherited from interface de.jstacs.Storable |
---|
toXML |
Method Detail |
---|
int getSizeOfEventSpaceForRandomVariablesOfParameter(int index)
index
, i.e. the product of the
sizes of the alphabets at the position of each random variable affected
by parameter index
. For DNA alphabets this corresponds to 4
for a PWM, 16 for a WAM except position 0, ...
index
- the index of the parameter
double getLogNormalizationConstant()
double getLogPartialNormalizationConstant(int parameterIndex) throws Exception
parameterIndex
. This is the logarithm of the partial derivation of the
normalization constant for the parameter with index
parameterIndex
,
parameterIndex
- the index of the parameter
Exception
- if something went wrong with the normalizationgetLogNormalizationConstant()
double getEss()
double getLogPriorTerm()
getEss()
* getLogNormalizationConstant()
+ Math.log( prior )
prior
is the prior for the parameters of this model.
getEss()
* getLogNormalizationConstant()
+ Math.log( prior ).
getEss()
,
getLogNormalizationConstant()
void addGradientOfLogPriorTerm(double[] grad, int start) throws Exception
getLogPriorTerm()
for each
parameter of this model. The results are added to the array
grad
beginning at index start
.
grad
- the array of gradientsstart
- the start index in the grad
array, where the
partial derivations for the parameters of this models shall be
entered
Exception
- if something went wrong with the computing of the gradientsgetLogPriorTerm()
boolean isNormalized()
false
.
true
if the implemented score is already normalized
to 1, false
otherwisedouble getInitialClassParam(double classProb)
ScoringFunction
ScoringFunction
is responsible for, based on the class
probability classProb
.
getInitialClassParam
in interface ScoringFunction
classProb
- the class probability
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |