Package | Description |
---|---|
de.jstacs.classifiers |
This package provides the framework for any classifier.
|
de.jstacs.classifiers.assessment |
This package allows to assess classifiers.
It contains the class ClassifierAssessment that
is used as a super-class of all implemented methodologies of
an assessment to assess classifiers. |
de.jstacs.classifiers.differentiableSequenceScoreBased |
Provides the classes for
Classifier s that are based on SequenceScore s.It includes a sub-package for discriminative objective functions, namely conditional likelihood and supervised posterior, and a separate sub-package for the parameter priors, that can be used for the supervised posterior. |
de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix |
Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModel s by
a unified generative-discriminative learning principle. |
de.jstacs.classifiers.differentiableSequenceScoreBased.sampling |
Provides the classes for
AbstractScoreBasedClassifier s that are based on
SamplingDifferentiableStatisticalModel s
and that sample parameters using the Metropolis-Hastings algorithm. |
de.jstacs.classifiers.trainSMBased |
Provides the classes for
Classifier s that are based on TrainableStatisticalModel s. |
de.jstacs.classifiers.utils |
Provides some useful classes for working with classifiers.
|
de.jstacs.data |
Provides classes for the representation of data.
The base classes to represent data are Alphabet and AlphabetContainer for representing alphabets,
Sequence and its sub-classes to represent continuous and discrete sequences, and
DataSet to represent data sets comprising a set of sequences. |
de.jstacs.data.bioJava |
Provides an adapter between the representation of data in BioJava and the representation used in Jstacs.
|
de.jstacs.data.sequences |
Provides classes for representing sequences.
The implementations of sequences currently include DiscreteSequence s prepared for alphabets of different sizes, and ArbitrarySequence s that may
contain continuous values as well.As sub-package provides the facilities to annotate Sequence s. |
de.jstacs.motifDiscovery |
This package provides the framework including the interface for any de novo motif discoverer.
|
de.jstacs.results |
This package provides classes for results and sets of results.
|
de.jstacs.sampling |
This package contains many classes that can be used while a sampling.
|
de.jstacs.sequenceScores |
Provides all
SequenceScore s, which can be used to score a Sequence , typically using some model assumptions. |
de.jstacs.sequenceScores.differentiable | |
de.jstacs.sequenceScores.differentiable.logistic | |
de.jstacs.sequenceScores.statisticalModels |
Provides all
StatisticalModel s, which can compute a proper (i.e., normalized) likelihood over the input space of sequences.StatisticalModel s can be further differentiated into TrainableStatisticalModel s,
which can be learned from a single input DataSet , and DifferentiableStatisticalModel s,
which define a proper likelihood but can also compute gradients like DifferentiableSequenceScore s. |
de.jstacs.sequenceScores.statisticalModels.differentiable |
Provides all
DifferentiableStatisticalModel s, which can compute the gradient with
respect to their parameters for a given input Sequence . |
de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels |
Provides
DifferentiableStatisticalModel s that are directed graphical models. |
de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures |
Provides the facilities to learn the structure of a
BayesianNetworkDiffSM . |
de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures |
Provides the facilities to learn the structure of a
BayesianNetworkDiffSM as
a Bayesian tree using a number of measures to define a rating of structures. |
de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures |
Provides the facilities to learn the structure of a
BayesianNetworkDiffSM as
a permuted Markov model using a number of measures to define a rating of structures. |
de.jstacs.sequenceScores.statisticalModels.differentiable.homogeneous |
Provides
DifferentiableStatisticalModel s that are homogeneous, i.e. |
de.jstacs.sequenceScores.statisticalModels.differentiable.localMixture | |
de.jstacs.sequenceScores.statisticalModels.differentiable.mixture |
Provides
DifferentiableSequenceScore s that are mixtures of other DifferentiableSequenceScore s. |
de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif | |
de.jstacs.sequenceScores.statisticalModels.trainable |
Provides all
TrainableStatisticalModel s, which can
be learned from a single DataSet . |
de.jstacs.sequenceScores.statisticalModels.trainable.discrete | |
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous | |
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous |
This package contains various inhomogeneous models.
|
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared | |
de.jstacs.sequenceScores.statisticalModels.trainable.hmm |
The package provides all interfaces and classes for a hidden Markov model (HMM).
|
de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models |
The package provides different implementations of hidden Markov models based on
AbstractHMM . |
de.jstacs.sequenceScores.statisticalModels.trainable.mixture |
This package is the super package for any mixture model.
|
de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif | |
de.jstacs.utils |
This package contains a bundle of useful classes and interfaces like ...
|
Modifier and Type | Method and Description |
---|---|
DataSet[] |
MappingClassifier.mapDataSet(DataSet[] s)
This method maps the given
DataSet s to the internal classes. |
Modifier and Type | Method and Description |
---|---|
protected void |
AbstractScoreBasedClassifier.check(DataSet s)
This method checks if the given
DataSet can be used. |
byte[] |
AbstractClassifier.classify(DataSet s)
This method classifies all sequences of a data set and returns an array of
indices of the classes to which the respective sequences are assigned
with for each index
i in the array
0 < i < getNumberOfClasses() . |
ResultSet |
AbstractClassifier.evaluate(AbstractPerformanceMeasureParameterSet<? extends PerformanceMeasure> params,
boolean exceptionIfNotComputeable,
DataSet... s)
This method evaluates the classifier and computes, for instance, the sensitivity for a given specificity, the
area under the ROC curve and so on.
|
ResultSet |
AbstractClassifier.evaluate(AbstractPerformanceMeasureParameterSet<? extends PerformanceMeasure> params,
boolean exceptionIfNotComputeable,
DataSet[] s,
double[][] weights)
This method evaluates the classifier and computes, for instance, the sensitivity for a given specificity, the
area under the ROC curve and so on.
|
protected double[][][] |
AbstractScoreBasedClassifier.getMultiClassScores(DataSet[] s) |
protected double[][][] |
AbstractClassifier.getMultiClassScores(DataSet[] s)
This method returns a multidimensional array with class specific scores.
|
double[] |
AbstractScoreBasedClassifier.getPValue(DataSet candidates,
DataSet bg)
|
double |
AbstractScoreBasedClassifier.getPValue(Sequence candidate,
DataSet bg)
|
protected boolean |
MappingClassifier.getResults(LinkedList list,
DataSet[] s,
double[][] weights,
AbstractPerformanceMeasureParameterSet<? extends PerformanceMeasure> params,
boolean exceptionIfNotComputeable) |
protected boolean |
AbstractScoreBasedClassifier.getResults(LinkedList list,
DataSet[] s,
double[][] weights,
AbstractPerformanceMeasureParameterSet<? extends PerformanceMeasure> params,
boolean exceptionIfNotComputeable) |
protected boolean |
AbstractClassifier.getResults(LinkedList list,
DataSet[] s,
double[][] weights,
AbstractPerformanceMeasureParameterSet<? extends PerformanceMeasure> params,
boolean exceptionIfNotComputeable)
This method computes the results for any evaluation of the classifier.
|
double[] |
AbstractScoreBasedClassifier.getScores(DataSet s)
|
DataSet[] |
MappingClassifier.mapDataSet(DataSet[] s)
This method maps the given
DataSet s to the internal classes. |
void |
AbstractClassifier.train(DataSet... s)
Trains the
AbstractClassifier object given the data as
DataSet s.This method should work non-incrementally. |
void |
MappingClassifier.train(DataSet[] s,
double[][] weights) |
abstract void |
AbstractClassifier.train(DataSet[] s,
double[][] weights)
This method trains a classifier over an array of weighted
DataSet
s. |
Modifier and Type | Method and Description |
---|---|
ListResult |
ClassifierAssessment.assess(NumericalPerformanceMeasureParameterSet mp,
T assessPS,
DataSet... s)
Assesses the contained classifiers.
|
ListResult |
ClassifierAssessment.assess(NumericalPerformanceMeasureParameterSet mp,
T assessPS,
ProgressUpdater pU,
DataSet[] s)
Assesses the contained classifiers.
|
ListResult |
ClassifierAssessment.assess(NumericalPerformanceMeasureParameterSet mp,
T assessPS,
ProgressUpdater pU,
DataSet[][]... s)
Assesses the contained classifiers.
|
ListResult |
ClassifierAssessment.assess(NumericalPerformanceMeasureParameterSet mp,
T assessPS,
ProgressUpdater pU,
DataSet[] s,
double[][] weights)
Assesses the contained classifiers.
|
ListResult |
KFoldCrossValidation.assessWithPredefinedSplits(NumericalPerformanceMeasureParameterSet mp,
ClassifierAssessmentAssessParameterSet caaps,
ProgressUpdater pU,
DataSet[][] splitData,
double[][][] splitWeights)
This method implements a k-fold crossvalidation on previously split data.
|
protected void |
KFoldCrossValidation.evaluateClassifier(NumericalPerformanceMeasureParameterSet mp,
KFoldCrossValidationAssessParameterSet assessPS,
DataSet[] s,
double[][] weights,
ProgressUpdater pU)
Evaluates a classifier.
|
protected void |
RepeatedHoldOutExperiment.evaluateClassifier(NumericalPerformanceMeasureParameterSet mp,
RepeatedHoldOutAssessParameterSet assessPS,
DataSet[] s,
double[][] weights,
ProgressUpdater pU)
Evaluates the classifier.
|
protected void |
RepeatedSubSamplingExperiment.evaluateClassifier(NumericalPerformanceMeasureParameterSet mp,
RepeatedSubSamplingAssessParameterSet assessPS,
DataSet[] s,
double[][] weights,
ProgressUpdater pU)
Evaluates the classifier.
|
protected void |
Sampled_RepeatedHoldOutExperiment.evaluateClassifier(NumericalPerformanceMeasureParameterSet mp,
Sampled_RepeatedHoldOutAssessParameterSet assessPS,
DataSet[] s,
double[][] weights,
ProgressUpdater pU) |
protected abstract void |
ClassifierAssessment.evaluateClassifier(NumericalPerformanceMeasureParameterSet mp,
T assessPS,
DataSet[] s,
double[][] weights,
ProgressUpdater pU)
This method must be implemented in all subclasses.
|
protected void |
ClassifierAssessment.prepareAssessment(boolean storeAll,
DataSet... s)
Prepares an assessment.
|
protected void |
ClassifierAssessment.test(NumericalPerformanceMeasureParameterSet mp,
boolean exception,
DataSet[] testS,
double[][] weights)
Uses the given test data sets to call the evaluate( ...
|
protected void |
ClassifierAssessment.train(DataSet[] trainS,
double[][] weights)
Trains the local classifiers using the given training data sets.
|
Modifier and Type | Field and Description |
---|---|
protected DataSet[] |
AbstractOptimizableFunction.data
The data that is used to evaluate this function.
|
Modifier and Type | Method and Description |
---|---|
abstract DataSet[] |
OptimizableFunction.getData()
Returns the data for each class used in this
OptimizableFunction . |
DataSet[] |
AbstractOptimizableFunction.getData() |
Modifier and Type | Method and Description |
---|---|
protected void |
ScoreClassifier.createStructure(DataSet[] data,
double[][] weights)
Creates the structure that will be used in the optimization.
|
protected void |
ScoreClassifier.createStructure(DataSet[] data,
double[][] weights,
boolean initRandomly)
Creates the structure that will be used in the optimization.
|
protected double |
ScoreClassifier.doOptimization(DataSet[] reduced,
double[][] newWeights)
This method does the optimization of the
train -method |
protected abstract DiffSSBasedOptimizableFunction |
ScoreClassifier.getFunction(DataSet[] data,
double[][] weights)
Returns the function that should be optimized.
|
abstract void |
OptimizableFunction.setDataAndWeights(DataSet[] data,
double[][] weights)
This method sets the data set and the sequence weights to be used.
|
void |
AbstractOptimizableFunction.setDataAndWeights(DataSet[] data,
double[][] weights) |
void |
AbstractMultiThreadedOptimizableFunction.setDataAndWeights(DataSet[] data,
double[][] weights) |
void |
ScoreClassifier.train(DataSet[] data,
double[][] weights) |
Constructor and Description |
---|
AbstractMultiThreadedOptimizableFunction(int threads,
DataSet[] data,
double[][] weights,
boolean norm,
boolean freeParams)
The constructor for an multi-threaded instance.
|
AbstractOptimizableFunction(DataSet[] data,
double[][] weights,
boolean norm,
boolean freeParams)
The constructor creates an instance using the given weighted data.
|
DiffSSBasedOptimizableFunction(int threads,
DifferentiableSequenceScore[] score,
DataSet[] data,
double[][] weights,
LogPrior prior,
boolean norm,
boolean freeParams)
Creates an instance with the underlying infrastructure.
|
Modifier and Type | Method and Description |
---|---|
DataSet[] |
OneDataSetLogGenDisMixFunction.getData() |
Modifier and Type | Method and Description |
---|---|
protected LogGenDisMixFunction |
GenDisMixClassifier.getFunction(DataSet[] data,
double[][] weights) |
void |
OneDataSetLogGenDisMixFunction.setDataAndWeights(DataSet[] data,
double[][] weights) |
Constructor and Description |
---|
LogGenDisMixFunction(int threads,
DifferentiableSequenceScore[] score,
DataSet[] data,
double[][] weights,
LogPrior prior,
double[] beta,
boolean norm,
boolean freeParams)
The constructor for creating an instance that can be used in an
Optimizer . |
OneDataSetLogGenDisMixFunction(int threads,
DifferentiableSequenceScore[] score,
DataSet data,
double[][] weights,
LogPrior prior,
double[] beta,
boolean norm,
boolean freeParams)
The constructor for creating an instance that can be used in an
Optimizer . |
Modifier and Type | Method and Description |
---|---|
void |
SamplingScoreBasedClassifier.doSingleSampling(DataSet[] s,
double[][] weights,
int numSteps,
String outfilePrefix)
Does a single sampling run for a predefined number of steps.
|
protected abstract Function |
SamplingScoreBasedClassifier.getFunction(DataSet[] data,
double[][] weights)
Returns the function that should be sampled from.
|
protected DiffSSBasedOptimizableFunction |
SamplingGenDisMixClassifier.getFunction(DataSet[] data,
double[][] weights) |
double[] |
SamplingScoreBasedClassifier.getScores(DataSet s) |
void |
SamplingScoreBasedClassifier.train(DataSet[] s,
double[][] weights) |
Modifier and Type | Method and Description |
---|---|
byte[] |
TrainSMBasedClassifier.classify(DataSet s) |
double[] |
TrainSMBasedClassifier.getScores(DataSet s) |
void |
TrainSMBasedClassifier.train(DataSet[] s,
double[][] weights) |
Modifier and Type | Method and Description |
---|---|
static ImageResult |
ClassificationVisualizer.getFancyScatterplot(AbstractScoreBasedClassifier cl1,
AbstractScoreBasedClassifier cl2,
REnvironment e,
DataSet... data)
Scatters the classification scores of two binary classifiers for given data.
|
static ImageResult |
ClassificationVisualizer.getScatterplot(AbstractScoreBasedClassifier cl1,
AbstractScoreBasedClassifier cl2,
DataSet class0,
DataSet class1,
REnvironment e,
boolean drawThreshold)
This method returns an
ImageResult containing a scatter plot of
the scores for the given classifiers cl1 and
cl2 . |
static ImageResult |
ClassificationVisualizer.plotScores(AbstractScoreBasedClassifier cl,
DataSet class0,
DataSet class1,
REnvironment e,
int bins,
double density,
String plotOptions)
This method returns an
ImageResult containing a plot of the
histograms of the scores. |
static void |
ClassificationVisualizer.plotScores(AbstractScoreBasedClassifier cl,
DataSet class0,
DataSet class1,
REnvironment e,
int bins,
double density,
String plotOptions,
String fName)
This method creates a pdf containing a plot of the histograms of the
scores.
|
Modifier and Type | Class and Description |
---|---|
class |
DNADataSet
|
Modifier and Type | Method and Description |
---|---|
static DataSet |
DataSet.diff(DataSet data,
DataSet... samples)
|
DataSet |
DataSet.getCompositeDataSet(int[] starts,
int[] lengths)
|
DataSet |
DataSet.WeightedDataSetFactory.getDataSet()
|
static DataSet |
DinucleotideProperty.getDataSetForProperty(DataSet original,
DinucleotideProperty... properties)
Creates a new
DataSet by converting each Sequence in original to the DinucleotideProperty s properties and setting these as ReferenceSequenceAnnotation of each original sequence. |
static DataSet |
DinucleotideProperty.getDataSetForProperty(DataSet original,
DinucleotideProperty.Smoothing smoothing,
boolean addToAnnotation,
DinucleotideProperty... properties)
Creates a new
DataSet by converting each Sequence in original to the DinucleotideProperty s properties and adding or setting these as ReferenceSequenceAnnotation of each original sequence. |
static DataSet |
DinucleotideProperty.getDataSetForProperty(DataSet original,
DinucleotideProperty.Smoothing smoothing,
boolean originalAsAnnotation,
DinucleotideProperty property)
Creates a new
DataSet by converting each Sequence in original to the DinucleotideProperty property using the DinucleotideProperty.Smoothing smoothing. |
static DataSet |
DinucleotideProperty.getDataSetForProperty(DataSet original,
DinucleotideProperty property)
|
DataSet |
DataSet.getInfixDataSet(int start,
int length)
This method enables you to use only an infix of all elements, i.e.
|
DataSet |
DataSet.getPartialDataSet(int[]... indexes)
|
DataSet |
DataSet.getPartialDataSet(int start,
int end)
|
DataSet |
DataSet.getReverseComplementaryDataSet()
|
DataSet |
DataSet.getSuffixDataSet(int start)
This method enables you to use only a suffix of all elements, i.e.
|
static DataSet |
DataSet.intersection(DataSet... samples)
This method computes the intersection between all elements/
DataSet
s of the array, i.e. |
DataSet[] |
DataSet.partition(DataSet.PartitionMethod method,
double... percentage)
This method partitions the elements, i.e.
|
DataSet[] |
DataSet.partition(DataSet.PartitionMethod method,
int k)
This method partitions the elements, i.e.
|
DataSet |
DataSet.subSampling(int number)
Randomly samples elements, i.e.
|
static DataSet |
DataSet.union(DataSet... s)
Unites all
DataSet s of the array s . |
static DataSet |
DataSet.union(DataSet[] s,
boolean[] in)
|
Modifier and Type | Method and Description |
---|---|
Pair<DataSet,double[]> |
DataSet.resize(double[] weights,
int subsequenceLength)
Returns modified version of this data set with adjusted subsequence length.
|
Pair<DataSet,double[]> |
DataSet.subSampling(double number,
double[] weights)
Sub-samples sequences and corresponding weights from this
DataSet . |
static Pair<DataSet,double[]> |
DataSet.union(DataSet[] s,
double[][] weights,
boolean[] in)
|
Modifier and Type | Method and Description |
---|---|
static DataSet |
DataSet.diff(DataSet data,
DataSet... samples)
|
static DataSet |
DataSet.diff(DataSet data,
DataSet... samples)
|
static String |
DataSet.getAnnotation(DataSet... s)
Returns the annotation for an array of
DataSet s. |
static DataSet |
DinucleotideProperty.getDataSetForProperty(DataSet original,
DinucleotideProperty... properties)
Creates a new
DataSet by converting each Sequence in original to the DinucleotideProperty s properties and setting these as ReferenceSequenceAnnotation of each original sequence. |
static DataSet |
DinucleotideProperty.getDataSetForProperty(DataSet original,
DinucleotideProperty.Smoothing smoothing,
boolean addToAnnotation,
DinucleotideProperty... properties)
Creates a new
DataSet by converting each Sequence in original to the DinucleotideProperty s properties and adding or setting these as ReferenceSequenceAnnotation of each original sequence. |
static DataSet |
DinucleotideProperty.getDataSetForProperty(DataSet original,
DinucleotideProperty.Smoothing smoothing,
boolean originalAsAnnotation,
DinucleotideProperty property)
Creates a new
DataSet by converting each Sequence in original to the DinucleotideProperty property using the DinucleotideProperty.Smoothing smoothing. |
static DataSet |
DinucleotideProperty.getDataSetForProperty(DataSet original,
DinucleotideProperty property)
|
static ImageResult |
DinucleotideProperty.getPropertyImage(DataSet original,
DinucleotideProperty prop,
DinucleotideProperty.Smoothing smoothing,
REnvironment re,
int xLeft,
String pltOptions,
int width,
int height) |
static DataSet |
DataSet.intersection(DataSet... samples)
This method computes the intersection between all elements/
DataSet
s of the array, i.e. |
static DataSet |
DataSet.union(DataSet... s)
Unites all
DataSet s of the array s . |
static DataSet |
DataSet.union(DataSet[] s,
boolean[] in)
|
static Pair<DataSet,double[]> |
DataSet.union(DataSet[] s,
double[][] weights,
boolean[] in)
|
Modifier and Type | Method and Description |
---|---|
static DataSet |
BioJavaAdapter.sequenceIteratorToDataSet(SequenceIterator it,
FeatureFilter filter,
AlphabetContainer con)
This method creates a new
DataSet from a SequenceIterator . |
Modifier and Type | Method and Description |
---|---|
static SequenceIterator |
BioJavaAdapter.dataSetToSequenceIterator(DataSet sample,
boolean flat,
boolean alwaysUseDNAAlphabet)
|
Modifier and Type | Method and Description |
---|---|
static DataSet |
SparseSequence.getDataSet(AlphabetContainer con,
AbstractStringExtractor... se)
This method allows to create a
DataSet containing SparseSequence s. |
static DataSet |
ArbitraryFloatSequence.getDataSet(AlphabetContainer con,
AbstractStringExtractor... se)
This method allows to create a
DataSet containing ArbitraryFloatSequence s. |
static DataSet |
SparseSequence.getDataSet(AlphabetContainer con,
String filename)
This method allows to create a
DataSet containing SparseSequence s using
a file name. |
static DataSet |
ArbitraryFloatSequence.getDataSet(AlphabetContainer con,
String filename)
This method allows to create a
DataSet containing ArbitraryFloatSequence s using
a file name. |
static DataSet |
SparseSequence.getDataSet(AlphabetContainer con,
String filename,
SequenceAnnotationParser parser)
This method allows to create a
DataSet containing SparseSequence s using
a file name. |
static DataSet |
ArbitraryFloatSequence.getDataSet(AlphabetContainer con,
String filename,
SequenceAnnotationParser parser)
This method allows to create a
DataSet containing ArbitraryFloatSequence s using
a file name. |
Modifier and Type | Method and Description |
---|---|
DataSet |
SignificantMotifOccurrencesFinder.annotateMotif(DataSet data,
int motifIndex)
This method annotates a
DataSet . |
DataSet |
SignificantMotifOccurrencesFinder.annotateMotif(DataSet data,
int motifIndex,
int addMax)
This method annotates a
DataSet . |
DataSet |
SignificantMotifOccurrencesFinder.annotateMotif(int startPos,
DataSet data,
int motifIndex)
This method annotates a
DataSet starting in each sequence at startPos . |
DataSet |
SignificantMotifOccurrencesFinder.annotateMotif(int startPos,
DataSet data,
int motifIndex,
int addMax,
boolean addAnnotation)
This method annotates a
DataSet starting in each sequence at startPos . |
DataSet |
SignificantMotifOccurrencesFinder.getBindingSites(DataSet data,
int motifIndex)
This method returns a
DataSet containing the predicted binding sites. |
DataSet |
SignificantMotifOccurrencesFinder.getBindingSites(int startPos,
DataSet data,
int motifIndex,
int addMax,
int addLeft,
int addRight)
This method returns a
DataSet containing the predicted binding sites. |
Modifier and Type | Method and Description |
---|---|
void |
MutableMotifDiscoverer.adjustHiddenParameters(int index,
DataSet[] data,
double[][] weights)
Adjusts all hidden parameters including duration and mixture parameters according to the current values of the remaining parameters.
|
DataSet |
SignificantMotifOccurrencesFinder.annotateMotif(DataSet data,
int motifIndex)
This method annotates a
DataSet . |
DataSet |
SignificantMotifOccurrencesFinder.annotateMotif(DataSet data,
int motifIndex,
int addMax)
This method annotates a
DataSet . |
DataSet |
SignificantMotifOccurrencesFinder.annotateMotif(int startPos,
DataSet data,
int motifIndex)
This method annotates a
DataSet starting in each sequence at startPos . |
DataSet |
SignificantMotifOccurrencesFinder.annotateMotif(int startPos,
DataSet data,
int motifIndex,
int addMax,
boolean addAnnotation)
This method annotates a
DataSet starting in each sequence at startPos . |
static ListResult |
MotifDiscoveryAssessment.assess(DataSet truth,
DataSet prediction,
int maxDiff)
This method computes the nucleotide and site measures.
|
static boolean |
MutableMotifDiscovererToolbox.doHeuristicSteps(DifferentiableSequenceScore[] funs,
DataSet[] data,
double[][] weights,
DiffSSBasedOptimizableFunction opt,
DifferentiableFunction neg,
byte algorithm,
double linEps,
StartDistanceForecaster startDistance,
SafeOutputStream out,
boolean breakOnChanged,
History[][] hist,
int[][] minimalNewLength,
boolean maxPos)
This method tries to make some heuristic step if at least one
DifferentiableSequenceScore is a MutableMotifDiscoverer . |
static boolean |
MutableMotifDiscovererToolbox.findModification(int clazz,
int motif,
MutableMotifDiscoverer mmd,
DifferentiableSequenceScore[] score,
DataSet[] data,
double[][] weights,
DiffSSBasedOptimizableFunction opt,
DifferentiableFunction neg,
byte algo,
double linEps,
StartDistanceForecaster startDistance,
SafeOutputStream out,
History hist,
int minimalNewLength,
boolean maxPos)
This method tries to find a modification, i.e.
|
static DataSet.WeightedDataSetFactory |
KMereStatistic.getAbsoluteKMereFrequencies(DataSet data,
int k,
boolean bothStrands)
This method enables the user to get a statistic over all
k -mers
in the data . |
static DataSet.WeightedDataSetFactory |
KMereStatistic.getAbsoluteKMereFrequencies(DataSet data,
int k,
boolean bothStrands,
DataSet.WeightedDataSetFactory.SortOperation sortOp)
This method enables the user to get a statistic over all
k -mers
in the data . |
DataSet |
SignificantMotifOccurrencesFinder.getBindingSites(DataSet data,
int motifIndex)
This method returns a
DataSet containing the predicted binding sites. |
DataSet |
SignificantMotifOccurrencesFinder.getBindingSites(int startPos,
DataSet data,
int motifIndex,
int addMax,
int addLeft,
int addRight)
This method returns a
DataSet containing the predicted binding sites. |
static Sequence[] |
KMereStatistic.getCommonString(DataSet data,
int motifLength,
boolean bothStrands)
This method returns an array of sequences of length
motifLength so that each string is contained in all
sequences of the data set, more precisely in the data set or the reverse
complementary data set. |
static Pair<Sequence,BitSet[]>[] |
KMereStatistic.getKmereSequenceStatistic(boolean bothStrands,
int maxMismatch,
HashSet<Sequence> filter,
DataSet... data)
This method enables the user to get a statistic for a set of
k -mers. |
static Hashtable<Sequence,BitSet[]> |
KMereStatistic.getKmereSequenceStatistic(int k,
boolean bothStrands,
int addIndex,
DataSet... data)
This method enables the user to get a statistic over all
k -mers
in the sequences. |
double |
SignificantMotifOccurrencesFinder.getNumberOfBoundSequences(DataSet data,
double[] weights,
int motifIndex)
Returns the number of sequences in
data that are predicted to be bound at least once by motif no. |
double[][] |
SignificantMotifOccurrencesFinder.getPWM(int motif,
DataSet data,
double[] weights,
int addLeft,
int addRight)
Returns the Position weight matrix (PWM) of the binding sites of motif
motif
in the data set data of the MotifDiscoverer of this SignificantMotifOccurrencesFinder . |
Pair<double[][],double[]> |
SignificantMotifOccurrencesFinder.getPWMAndPosDist(int motif,
DataSet data,
double[] weights,
double[] mean,
int addLeft,
int addRight)
Returns the Position weight matrix (PWM) of the binding sites of motif
motif
in the data set data of the MotifDiscoverer of this SignificantMotifOccurrencesFinder
together with standard deviation of binding site positions computed using the provided mean values for each sequence. |
Pair<double[][],double[]> |
SignificantMotifOccurrencesFinder.getPWMAndPosDist(int motif,
DataSet data,
double[] weights,
double[] mean,
int addLeft,
int addRight,
LinkedList<Sequence> bs,
DoubleList bsWeight,
DoubleList bsScores)
Returns the position weight matrix and standard deviation of the position distribution using the given mean.
|
Pair<double[][][],int[][]> |
SignificantMotifOccurrencesFinder.getPWMAndPositions(int motif,
DataSet data,
double[] weights,
int addLeft,
int addRight)
Returns the Position weight matrix (PWM) of the binding sites of motif
motif
in the data set data of the MotifDiscoverer of this SignificantMotifOccurrencesFinder
together with the positions of the binding sites within the sequences of data and the corresponding p-values. |
protected double[][] |
SignificantMotifOccurrencesFinder.getPWMAndPositions(int motif,
DataSet data,
double[] weights,
int addLeft,
int addRight,
int[][] positions,
double[][] pvals,
double[] mean,
double[] sd,
LinkedList<Sequence> bs,
DoubleList bsWeights,
DoubleList bsScores)
Returns the Position weight matrix (PWM) of the binding sites of motif
motif
in the data set data of the MotifDiscoverer of this SignificantMotifOccurrencesFinder
and fills with the positions of the binding sites within the sequences of data and the corresponding p-values into the corresponding arrays. |
static double[][] |
MotifDiscoveryAssessment.getSortedScoresForMotifAndFlanking(DataSet data,
DataSet pred,
String identifier)
Returns the scores read from the prediction
pred for the motif with identifier identifier and flanking sequences as annotated in
the DataSet data. |
static double[][] |
MotifDiscoveryAssessment.getSortedValuesForMotifAndFlanking(DataSet data,
double[][] values,
double offset,
double factor,
String identifier)
This method provides some score arrays that can be used in
AbstractPerformanceMeasure to determine some
curves or area under curves based on the values of the predictions. |
IntList |
SignificantMotifOccurrencesFinder.getStartPositions(int startPos,
DataSet data,
int motifIndex,
int addMax)
This method returns a list of start positions of binding sites.
|
double[][] |
SignificantMotifOccurrencesFinder.getValuesForEachNucleotide(DataSet data,
int motif,
boolean addOnlyBest)
This method determines a score for each possible starting position in each of the sequences in
data
that this position is covered by at least one motif occurrence of the
motif with index index . |
void |
MutableMotifDiscoverer.initializeMotif(int motifIndex,
DataSet data,
double[] weights)
This method allows to initialize the model of a motif manually using a weighted data set.
|
static void |
MutableMotifDiscovererToolbox.initMotif(int idx,
int[] classIndex,
int[] motifIndex,
DataSet[] s,
double[][] seqWeights,
boolean[] adjust,
MutableMotifDiscoverer[] mmd,
int[] len,
DataSet[] data,
double[][] dataWeights)
This method allows to initialize a number of motifs.
|
static void |
MutableMotifDiscovererToolbox.initMotif(int idx,
int[] classIndex,
int[] motifIndex,
DataSet[] s,
double[][] seqWeights,
boolean[] adjust,
MutableMotifDiscoverer[] mmd,
int[] len,
DataSet[] data,
double[][] dataWeights)
This method allows to initialize a number of motifs.
|
Constructor and Description |
---|
KMereStatistic(DataSet data,
int k)
This constructor creates an internal statistic counting all
k -mers in the data . |
SignificantMotifOccurrencesFinder(MotifDiscoverer disc,
DataSet bg,
double[] weights,
double sign)
This constructor creates an instance of
SignificantMotifOccurrencesFinder that uses a DataSet to determine the siginificance level. |
SignificantMotifOccurrencesFinder(MotifDiscoverer disc,
SignificantMotifOccurrencesFinder.JoinMethod joiner,
DataSet bg,
double[] weights,
double sign)
This constructor creates an instance of
SignificantMotifOccurrencesFinder that uses a DataSet to determine the siginificance level. |
Modifier and Type | Method and Description |
---|---|
DataSet |
DataSetResult.getValue() |
Constructor and Description |
---|
DataSetResult(String name,
String comment,
DataSet data)
|
Modifier and Type | Method and Description |
---|---|
void |
GibbsSamplingModel.drawParameters(DataSet data,
double[] weights)
This method draws the parameters of the model from the a posteriori
density.
|
Modifier and Type | Method and Description |
---|---|
double[] |
SequenceScore.getLogScoreFor(DataSet data)
This method computes the logarithm of the scores of all sequences
in the given data set.
|
void |
SequenceScore.getLogScoreFor(DataSet data,
double[] res)
This method computes and stores the logarithm of the scores for
any sequence in the data set in the given
double -array. |
Modifier and Type | Method and Description |
---|---|
int |
IndependentProductDiffSS.extractSequenceParts(int scoringFunctionIndex,
DataSet[] data,
DataSet[] result)
This method extracts the corresponding
Sequence parts for a specific DifferentiableSequenceScore . |
int |
IndependentProductDiffSS.extractSequenceParts(int scoringFunctionIndex,
DataSet[] data,
DataSet[] result)
This method extracts the corresponding
Sequence parts for a specific DifferentiableSequenceScore . |
double[] |
AbstractDifferentiableSequenceScore.getLogScoreFor(DataSet data) |
void |
AbstractDifferentiableSequenceScore.getLogScoreFor(DataSet data,
double[] res) |
void |
UniformDiffSS.initializeFunction(int index,
boolean meila,
DataSet[] data,
double[][] weights) |
void |
MultiDimensionalSequenceWrapperDiffSS.initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
void |
IndependentProductDiffSS.initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
void |
DifferentiableSequenceScore.initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
This method creates the underlying structure of the
DifferentiableSequenceScore . |
Modifier and Type | Method and Description |
---|---|
void |
LogisticDiffSS.initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
Modifier and Type | Method and Description |
---|---|
DataSet |
StatisticalModel.emitDataSet(int numberOfSequences,
int... seqLength)
This method returns a
DataSet object containing artificial
sequence(s). |
Modifier and Type | Method and Description |
---|---|
DataSet |
UniformDiffSM.emitDataSet(int numberOfSequences,
int... seqLength) |
DataSet |
MarkovRandomFieldDiffSM.emitDataSet(int numberOfSequences,
int... seqLength) |
DataSet |
IndependentProductDiffSM.emitDataSet(int numberOfSequences,
int... seqLength) |
DataSet |
AbstractDifferentiableStatisticalModel.emitDataSet(int numberOfSequences,
int... seqLength) |
Modifier and Type | Method and Description |
---|---|
void |
MappingDiffSM.adjustHiddenParameters(int index,
DataSet[] data,
double[][] weights) |
void |
IndependentProductDiffSM.adjustHiddenParameters(int index,
DataSet[] data,
double[][] weights) |
double[] |
AbstractDifferentiableStatisticalModel.getLogScoreFor(DataSet data) |
void |
AbstractDifferentiableStatisticalModel.getLogScoreFor(DataSet data,
double[] res) |
void |
UniformDiffSM.initializeFunction(int index,
boolean meila,
DataSet[] data,
double[][] weights) |
void |
NormalizedDiffSM.initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
void |
MarkovRandomFieldDiffSM.initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
void |
MappingDiffSM.initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
void |
CyclicMarkovModelDiffSM.initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
void |
MappingDiffSM.initializeMotif(int motifIndex,
DataSet data,
double[] weights) |
void |
IndependentProductDiffSM.initializeMotif(int motifIndex,
DataSet data,
double[] weights) |
Modifier and Type | Method and Description |
---|---|
DataSet |
BayesianNetworkDiffSM.emitDataSet(int numberOfSequences,
int... seqLength) |
Modifier and Type | Method and Description |
---|---|
protected void |
BayesianNetworkDiffSM.createTrees(DataSet[] data2,
double[][] weights2)
Creates the tree structures that represent the context (array
BayesianNetworkDiffSM.trees ) and the parameter objects BayesianNetworkDiffSM.parameters using the
given Measure BayesianNetworkDiffSM.structureMeasure . |
void |
BayesianNetworkDiffSM.initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
protected void |
BayesianNetworkDiffSM.setPlugInParameters(int index,
boolean freeParameters,
DataSet[] data,
double[][] weights)
Computes and sets the plug-in parameters (MAP estimated parameters) from
data using weights . |
Modifier and Type | Method and Description |
---|---|
abstract int[][] |
Measure.getParents(DataSet fg,
DataSet bg,
double[] weightsFg,
double[] weightsBg,
int length)
Returns the optimal parents for the given data and weights.
|
int[][] |
InhomogeneousMarkov.getParents(DataSet fg,
DataSet bg,
double[] weightsFg,
double[] weightsBg,
int length) |
protected static double[][][][] |
Measure.getStatistics(DataSet s,
double[] weights,
int length,
double ess)
|
protected static double[][][][][][] |
Measure.getStatisticsOrderTwo(DataSet s,
double[] weights,
int length,
double ess)
|
Modifier and Type | Method and Description |
---|---|
double[][] |
BTExplainingAwayResidual.getEAR(DataSet fg,
DataSet bg,
double[] weightsFg,
double[] weightsBg,
int length)
Returns the explaining away residual (EAR) between all pairs of positions
as a matrix.
|
int[][] |
BTMutualInformation.getParents(DataSet fg,
DataSet bg,
double[] weightsFg,
double[] weightsBg,
int length) |
int[][] |
BTExplainingAwayResidual.getParents(DataSet fg,
DataSet bg,
double[] weightsFg,
double[] weightsBg,
int length) |
Modifier and Type | Method and Description |
---|---|
int[][] |
PMMMutualInformation.getParents(DataSet fg,
DataSet bg,
double[] weightsFg,
double[] weightsBg,
int length) |
int[][] |
PMMExplainingAwayResidual.getParents(DataSet fg,
DataSet bg,
double[] weightsFg,
double[] weightsBg,
int length) |
Modifier and Type | Method and Description |
---|---|
DataSet |
HomogeneousMMDiffSM.emitDataSet(int numberOfSequences,
int... seqLength)
This method returns a
DataSet object containing artificial
sequence(s). |
Modifier and Type | Method and Description |
---|---|
void |
UniformHomogeneousDiffSM.initializeFunction(int index,
boolean meila,
DataSet[] data,
double[][] weights) |
void |
HomogeneousMMDiffSM.initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
void |
HomogeneousMM0DiffSM.initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
Modifier and Type | Method and Description |
---|---|
void |
LimitedSparseLocalInhomogeneousMixtureDiffSM_higherOrder.initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
Modifier and Type | Method and Description |
---|---|
DataSet |
MixtureDiffSM.emitDataSet(int numberOfSequences,
int... seqLength) |
Modifier and Type | Method and Description |
---|---|
void |
MixtureDiffSM.adjustHiddenParameters(int index,
DataSet[] data,
double[][] weights)
Adjusts all hidden parameters including duration and mixture parameters according to the current values of the remaining parameters.
|
void |
AbstractMixtureDiffSM.initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
void |
MixtureDiffSM.initializeMotif(int motifIndex,
DataSet data,
double[] weights) |
protected void |
StrandDiffSM.initializeUsingPlugIn(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
protected void |
MixtureDiffSM.initializeUsingPlugIn(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
protected abstract void |
AbstractMixtureDiffSM.initializeUsingPlugIn(int index,
boolean freeParams,
DataSet[] data,
double[][] weights)
This method initializes the functions using the data in some way.
|
Modifier and Type | Method and Description |
---|---|
void |
ExtendedZOOPSDiffSM.adjustHiddenParameters(int classIndex,
DataSet[] data,
double[][] dataWeights) |
void |
UniformDurationDiffSM.initializeFunction(int index,
boolean meila,
DataSet[] data,
double[][] weights) |
void |
SkewNormalLikeDurationDiffSM.initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
void |
MixtureDurationDiffSM.initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
void |
ExtendedZOOPSDiffSM.initializeMotif(int motif,
DataSet data,
double[] weights) |
protected void |
ExtendedZOOPSDiffSM.initializeUsingPlugIn(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
Modifier and Type | Method and Description |
---|---|
DataSet |
UniformTrainSM.emitDataSet(int n,
int... lengths) |
DataSet |
AbstractTrainableStatisticalModel.emitDataSet(int numberOfSequences,
int... seqLength) |
Modifier and Type | Method and Description |
---|---|
double[] |
AbstractTrainableStatisticalModel.getLogScoreFor(DataSet data) |
void |
AbstractTrainableStatisticalModel.getLogScoreFor(DataSet data,
double[] res) |
void |
TrainableStatisticalModel.train(DataSet data)
Trains the
TrainableStatisticalModel object given the data as DataSet . |
void |
AbstractTrainableStatisticalModel.train(DataSet data) |
void |
VariableLengthWrapperTrainSM.train(DataSet data,
double[] weights) |
void |
UniformTrainSM.train(DataSet data,
double[] weights)
Deprecated.
|
void |
TrainableStatisticalModel.train(DataSet data,
double[] weights)
Trains the
TrainableStatisticalModel object given the data as DataSet using
the specified weights. |
void |
PFMWrapperTrainSM.train(DataSet data,
double[] weights) |
void |
DifferentiableStatisticalModelWrapperTrainSM.train(DataSet data,
double[] weights) |
void |
CompositeTrainSM.train(DataSet data,
double[] weights) |
Modifier and Type | Method and Description |
---|---|
static double |
ConstraintManager.countInhomogeneous(AlphabetContainer alphabets,
int length,
DataSet data,
double[] weights,
boolean reset,
Constraint... constr)
Fills the (inhomogeneous)
constr with the weighted absolute frequency of the DataSet
data and computes the frequencies will not be computed. |
Modifier and Type | Method and Description |
---|---|
DataSet |
HomogeneousTrainSM.emitDataSet(int no,
int... length)
|
Modifier and Type | Method and Description |
---|---|
void |
HomogeneousTrainSM.train(DataSet[] data)
Trains the homogeneous model on all given
DataSet s. |
abstract void |
HomogeneousTrainSM.train(DataSet[] data,
double[][] weights)
Trains the homogeneous model using an array of weighted
DataSet s. |
void |
HomogeneousMM.train(DataSet[] data,
double[][] weights) |
void |
HomogeneousMM.train(DataSet data,
double[] weights) |
Modifier and Type | Method and Description |
---|---|
DataSet |
MEManager.emitDataSet(int n,
int... lengths) |
DataSet |
DAGTrainSM.emitDataSet(int n,
int... lengths) |
Modifier and Type | Method and Description |
---|---|
void |
FSDAGModelForGibbsSampling.drawParameters(DataSet data,
double[] weights) |
protected void |
DAGTrainSM.drawParameters(DataSet data,
double[] weights)
This method draws the parameter of the model from the likelihood or the
posterior, respectively.
|
void |
FSDAGTrainSM.drawParameters(DataSet data,
double[] weights,
int[][] graph)
This method draws the parameters of the model from the a posteriori
density.
|
void |
FSDAGModelForGibbsSampling.drawParameters(DataSet data,
double[] weights,
int[][] graph) |
protected void |
DAGTrainSM.estimateParameters(DataSet data,
double[] weights)
This method estimates the parameter of the model from the likelihood or
the posterior, respectively.
|
static BufferedImage |
TwoPointEvaluater.getImage(DataSet d,
double[] weights,
REnvironment r,
double alpha,
int... borders) |
static double[][] |
TwoPointEvaluater.getMI(DataSet s,
double[] weights)
This method computes the pairwise mutual information between
the sequence positions.
|
static double[][] |
TwoPointEvaluater.getMIInBits(DataSet s,
double[] weights)
This method computes the pairwise mutual information (in bits) between
the sequence positions.
|
int[][] |
StructureLearner.getStructure(DataSet data,
double[] weights,
StructureLearner.ModelType model,
byte order,
StructureLearner.LearningType method)
This method finds the optimal structure of a model by using a given
learning method (in some sense).
|
SymmetricTensor |
StructureLearner.getTensor(DataSet data,
double[] weights,
byte order,
StructureLearner.LearningType method)
This method can be used to compute a
Tensor that can be used to
determine the optimal structure. |
void |
FSMEManager.train(DataSet data,
double[] weights) |
void |
FSDAGTrainSM.train(DataSet data,
double[] weights) |
void |
FSDAGModelForGibbsSampling.train(DataSet data,
double[] weights) |
void |
BayesianNetworkTrainSM.train(DataSet data,
double[] weights) |
void |
FSDAGTrainSM.train(DataSet data,
double[] weights,
int[][] graph)
Computes the model with structure
graph . |
void |
FSDAGModelForGibbsSampling.train(DataSet data,
double[] weights,
int[][] graph) |
static void |
FSDAGTrainSM.train(TrainableStatisticalModel[] models,
int[][] graph,
double[][] weights,
DataSet... data)
Computes the models with structure
graph . |
protected void |
MEManager.trainFactors(DataSet data,
double[] weights)
This method trains the internal
MEM array,
i.e., it optimizes the parameters of the underlying MEMConstraint s. |
Modifier and Type | Method and Description |
---|---|
void |
SharedStructureClassifier.train(DataSet[] data,
double[][] weights) |
Modifier and Type | Method and Description |
---|---|
String |
AbstractHMM.getGraphvizRepresentation(NumberFormat nf,
DataSet data,
double[] weight,
boolean sameTypeSameRank)
This method returns a
String representation of the structure that
can be used in Graphviz to create an image. |
String |
AbstractHMM.getGraphvizRepresentation(NumberFormat nf,
DataSet data,
double[] weight,
HashMap<String,String> rankPatterns)
This method returns a
String representation of the structure that
can be used in Graphviz to create an image. |
double[][][] |
AbstractHMM.getLogStatePosteriorMatrixFor(DataSet data)
This method returns the log state posteriors for all sequences of the data set
data . |
double[][][] |
AbstractHMM.getStatePosteriorMatrixFor(DataSet data)
This method returns the state posteriors for all sequences of the data set
data . |
Pair<IntList,Double>[] |
AbstractHMM.getViterbiPathsFor(DataSet data)
This method returns the viterbi paths and scores for all sequences of the data set
data . |
void |
AbstractHMM.train(DataSet data) |
Modifier and Type | Method and Description |
---|---|
protected void |
SamplingHigherOrderHMM.furtherInits(DataSet data,
double[] weights)
This method allows the implementation of further initializations
|
double[] |
HigherOrderHMM.getLogScoreFor(DataSet data) |
void |
HigherOrderHMM.getLogScoreFor(DataSet data,
double[] res) |
protected void |
SamplingHigherOrderHMM.gibbsSamplingStep(int sampling,
int steps,
boolean append,
DataSet data,
double[] weights)
This method implements the next step(s) in the sampling procedure
|
protected void |
HigherOrderHMM.initialize(DataSet data,
double[] weight)
This method initializes all emissions and the transition.
|
void |
DifferentiableHigherOrderHMM.initializeFunction(int index,
boolean freeParams,
DataSet[] data,
double[][] weights) |
protected void |
SamplingHigherOrderHMM.initTraining(DataSet data,
double[] weights)
This methods initialize the training procedure with the given training data
|
void |
SamplingHigherOrderHMM.train(DataSet data,
double[] weights) |
void |
HigherOrderHMM.train(DataSet data,
double[] weights) |
void |
DifferentiableHigherOrderHMM.train(DataSet data,
double[] weights) |
Modifier and Type | Field and Description |
---|---|
protected DataSet[] |
AbstractMixtureTrainSM.sample
The data set that was used in the last training.
|
Modifier and Type | Method and Description |
---|---|
DataSet |
AbstractMixtureTrainSM.emitDataSet(int n,
int... lengths) |
Modifier and Type | Method and Description |
---|---|
protected double[][] |
AbstractMixtureTrainSM.doFirstIteration(DataSet data,
double[] dataWeights)
This method will do the first step in the train algorithm for the current
model.
|
double[][] |
MixtureTrainSM.doFirstIteration(DataSet data,
double[] dataWeights,
double[][] partitioning)
This method enables you to train a mixture model with a fixed start
partitioning.
|
protected double[][] |
AbstractMixtureTrainSM.doFirstIteration(DataSet data,
double[] dataWeights,
MultivariateRandomGenerator m,
MRGParams[] params)
This method will do the first step in the train algorithm for the current
model.
|
double[] |
AbstractMixtureTrainSM.getLogScoreFor(DataSet data) |
double |
AbstractMixtureTrainSM.iterate(DataSet data,
double[] dataWeights,
MultivariateRandomGenerator m,
MRGParams[] params)
This method runs the train algorithm for the current model.
|
void |
StrandTrainSM.setTrainData(DataSet s) |
protected void |
MixtureTrainSM.setTrainData(DataSet data) |
protected abstract void |
AbstractMixtureTrainSM.setTrainData(DataSet data)
This method is invoked by the
train -method and sets for a
given data set the data set that should be used for train . |
void |
AbstractMixtureTrainSM.train(DataSet data,
double[] dataWeights) |
Modifier and Type | Method and Description |
---|---|
protected void |
ZOOPSTrainSM.setTrainData(DataSet data) |
void |
HiddenMotifMixture.train(DataSet data,
double[] weights) |
void |
ZOOPSTrainSM.trainBgModel(DataSet data,
double[] weights) |
abstract void |
HiddenMotifMixture.trainBgModel(DataSet data,
double[] weights)
This method trains the background model.
|
Modifier and Type | Method and Description |
---|---|
static DataSet |
DiscreteInhomogenousDataSetEmitter.emitDataSet(StatisticalModel m,
int n)
This method emits a data set with
n sequences from the discrete inhomogeneous model m
. |
Modifier and Type | Method and Description |
---|---|
static double[] |
PFMComparator.getCounts(DataSet... data)
This method counts the occurrences of symbols in the given data sets.
|
static double |
StatisticalModelTester.getLogLikelihood(StatisticalModel m,
DataSet data)
|
static double |
StatisticalModelTester.getLogLikelihood(StatisticalModel m,
DataSet data,
double[] weights)
|
static double[][] |
PFMComparator.getPFM(DataSet data)
|
static double[][] |
PFMComparator.getPFM(DataSet data,
double[] weights)
|
static double[][] |
PFMComparator.getPFM(DataSet data,
int start,
int end)
Returns a position frequency matrix (PFM, rows=positions, columns=symbols) for the given subset of
DataSet . |
static double[][] |
PFMComparator.getPWM(DataSet data,
int start,
int end)
Returns a position weight matrix (PWM, rows=positions, columns=symbols, containing probabilities) for the given subset of
DataSet . |
static double |
StatisticalModelTester.getValueOfAIC(StatisticalModel m,
DataSet s,
int k)
This method computes the value of Akaikes Information Criterion (AIC).
|
static double |
StatisticalModelTester.getValueOfBIC(StatisticalModel m,
DataSet s,
int k)
This method computes the value of the Bayesian Information Criterion
(BIC).
|
static BufferedImage |
SeqLogoPlotter.plotDefaultDependencyLogoToBufferedImage(DataSet data,
double[] weights,
int width)
Plots a dependency logo using default parameters to a
BufferedImage . |
static void |
SeqLogoPlotter.plotDefaultDependencyLogoToGraphicsAdaptor(GraphicsAdaptor ga,
DataSet data,
double[] weights,
int width)
Plots a dependency logo using default parameters to a
GraphicsAdaptor . |
static int |
SeqLogoPlotter.plotDependencyLogo(DataSet seqs,
Object[] labels,
int ticPeriod,
double[][] classProbs,
double[] weights,
Graphics2D graph,
int width,
int offx,
int offy,
int[] numPerChunk,
int[] chunkHeights,
double minPercent,
int logoHeight,
boolean highlightMaxDeps,
int numBestForSorting,
boolean sortGlobally,
boolean sortByWeights,
boolean scaleByDeps,
double threshold)
Plots a dependency logo using the supplied parameters.
|