|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |
Uses of TrainableStatisticalModel in de.jstacs.classifiers.assessment |
---|
Fields in de.jstacs.classifiers.assessment declared as TrainableStatisticalModel | |
---|---|
protected TrainableStatisticalModel[][] |
ClassifierAssessment.myModel
This array contains for each class the internal used models. |
Constructors in de.jstacs.classifiers.assessment with parameters of type TrainableStatisticalModel | |
---|---|
ClassifierAssessment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given AbstractClassifier s and, in addition, classifiers that will be
constructed using the given TrainableStatisticalModel s. |
|
ClassifierAssessment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new ClassifierAssessment from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
|
ClassifierAssessment(boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
Creates a new ClassifierAssessment from a set of TrainableStatisticalModel s. |
|
KFoldCrossValidation(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given AbstractClassifier s and those constructed using the given
TrainableStatisticalModel s by a KFoldCrossValidation
. |
|
KFoldCrossValidation(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new KFoldCrossValidation from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
|
KFoldCrossValidation(boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
Creates a new KFoldCrossValidation from a set of TrainableStatisticalModel s. |
|
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given AbstractClassifier s and those constructed using the given
TrainableStatisticalModel s by a
RepeatedHoldOutExperiment . |
|
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new RepeatedHoldOutExperiment from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
|
RepeatedHoldOutExperiment(boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
Creates a new RepeatedHoldOutExperiment from a set of
TrainableStatisticalModel s. |
|
RepeatedSubSamplingExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given AbstractClassifier s and those constructed using the given
TrainableStatisticalModel s by a
RepeatedSubSamplingExperiment . |
|
RepeatedSubSamplingExperiment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new RepeatedSubSamplingExperiment from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
|
RepeatedSubSamplingExperiment(boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
Creates a new RepeatedSubSamplingExperiment from a set of
TrainableStatisticalModel s. |
|
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given AbstractClassifier s and those constructed using the given
TrainableStatisticalModel s by a
Sampled_RepeatedHoldOutExperiment . |
|
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new Sampled_RepeatedHoldOutExperiment from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
|
Sampled_RepeatedHoldOutExperiment(boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
Creates a new Sampled_RepeatedHoldOutExperiment from a set of
TrainableStatisticalModel s. |
Uses of TrainableStatisticalModel in de.jstacs.classifiers.trainSMBased |
---|
Fields in de.jstacs.classifiers.trainSMBased declared as TrainableStatisticalModel | |
---|---|
protected TrainableStatisticalModel[] |
TrainSMBasedClassifier.models
The internal TrainableStatisticalModel s. |
Methods in de.jstacs.classifiers.trainSMBased that return TrainableStatisticalModel | |
---|---|
TrainableStatisticalModel |
TrainSMBasedClassifier.getModel(int classIndex)
Returns a clone of the TrainableStatisticalModel for a specified class. |
Methods in de.jstacs.classifiers.trainSMBased with parameters of type TrainableStatisticalModel | |
---|---|
static int |
TrainSMBasedClassifier.getPossibleLength(TrainableStatisticalModel... models)
This method returns the possible length of a classifier that would use the given TrainableStatisticalModel s. |
Constructors in de.jstacs.classifiers.trainSMBased with parameters of type TrainableStatisticalModel | |
---|---|
TrainSMBasedClassifier(boolean cloneModels,
TrainableStatisticalModel... models)
This constructor creates a new instance with the given TrainableStatisticalModel s and
clones these if necessary. |
|
TrainSMBasedClassifier(TrainableStatisticalModel... models)
The default constructor that creates a new instance with the given TrainableStatisticalModel s. |
Uses of TrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.trainable that implement TrainableStatisticalModel | |
---|---|
class |
AbstractTrainableStatisticalModel
Abstract class for a model for pattern recognition. |
class |
CompositeTrainSM
This class is for modelling sequences by modelling the different positions of the each sequence by different models. |
class |
DifferentiableStatisticalModelWrapperTrainSM
This model can be used to use a DifferentiableStatisticalModel as model. |
class |
UniformTrainSM
This class represents a uniform model. |
class |
VariableLengthWrapperTrainSM
This class allows to train any TrainableStatisticalModel on DataSet s of Sequence s with
variable length if each individual length is at least SequenceScore.getLength() . |
Fields in de.jstacs.sequenceScores.statisticalModels.trainable declared as TrainableStatisticalModel | |
---|---|
protected TrainableStatisticalModel[] |
CompositeTrainSM.models
The models for the components |
Methods in de.jstacs.sequenceScores.statisticalModels.trainable that return TrainableStatisticalModel | |
---|---|
TrainableStatisticalModel |
TrainableStatisticalModel.clone()
Creates a clone (deep copy) of the current TrainableStatisticalModel instance. |
TrainableStatisticalModel[] |
CompositeTrainSM.getModels()
Returns the a deep copy of the models. |
Methods in de.jstacs.sequenceScores.statisticalModels.trainable with parameters of type TrainableStatisticalModel | |
---|---|
static MixtureTrainSM |
TrainableStatisticalModelFactory.createMixtureModel(double[] hyper,
TrainableStatisticalModel[] model)
This method allows to create a MixtureTrainSM that allows to model a DataSet as a mixture of individual components. |
static StrandTrainSM |
TrainableStatisticalModelFactory.createStrandModel(TrainableStatisticalModel model)
This method allows to create a StrandTrainSM that allows to score binding sites on both strand of DNA. |
static ZOOPSTrainSM |
TrainableStatisticalModelFactory.createZOOPS(TrainableStatisticalModel motif,
TrainableStatisticalModel bg,
double[] hyper,
boolean trainOnlyMotifModel)
This method allows to create a "zero or one occurrence per sequence" (ZOOPS) model that allows to discover binding sites in a DataSet . |
Constructors in de.jstacs.sequenceScores.statisticalModels.trainable with parameters of type TrainableStatisticalModel | |
---|---|
CompositeTrainSM(AlphabetContainer alphabets,
int[] assignment,
TrainableStatisticalModel... models)
Creates a new CompositeTrainSM . |
|
VariableLengthWrapperTrainSM(TrainableStatisticalModel m)
This is the main constructor that creates an instance from any TrainableStatisticalModel . |
Uses of TrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.discrete |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.trainable.discrete that implement TrainableStatisticalModel | |
---|---|
class |
DiscreteGraphicalTrainSM
This is the main class for all discrete graphical models (DGM). |
Uses of TrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous that implement TrainableStatisticalModel | |
---|---|
class |
HomogeneousMM
This class implements homogeneous Markov models (hMM) of arbitrary order. |
class |
HomogeneousTrainSM
This class implements homogeneous models of arbitrary order. |
Uses of TrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous that implement TrainableStatisticalModel | |
---|---|
class |
BayesianNetworkTrainSM
The class implements a Bayesian network ( StructureLearner.ModelType.BN ) of fixed order. |
class |
DAGTrainSM
The abstract class for directed acyclic graphical models ( DAGTrainSM ). |
class |
FSDAGModelForGibbsSampling
This is the class for a fixed structure directed acyclic graphical model (see FSDAGTrainSM ) that can be used in a Gibbs sampling. |
class |
FSDAGTrainSM
This class can be used for any discrete fixed structure directed acyclic graphical model ( FSDAGTrainSM ). |
class |
InhomogeneousDGTrainSM
This class is the main class for all inhomogeneous discrete graphical models ( InhomogeneousDGTrainSM ). |
Methods in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous with parameters of type TrainableStatisticalModel | |
---|---|
static void |
FSDAGTrainSM.train(TrainableStatisticalModel[] models,
int[][] graph,
double[][] weights,
DataSet... data)
Computes the models with structure graph . |
Uses of TrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared that implement TrainableStatisticalModel | |
---|---|
class |
SharedStructureMixture
This class handles a mixture of models with the same structure that is learned via EM. |
Uses of TrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.hmm |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.trainable.hmm that implement TrainableStatisticalModel | |
---|---|
class |
AbstractHMM
This class is the super class of all implementations hidden Markov models (HMMs) in Jstacs. |
Uses of TrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models that implement TrainableStatisticalModel | |
---|---|
class |
DifferentiableHigherOrderHMM
This class combines an HigherOrderHMM and a DifferentiableStatisticalModel by implementing some of the declared methods. |
class |
HigherOrderHMM
This class implements a higher order hidden Markov model. |
class |
SamplingHigherOrderHMM
|
class |
SamplingPhyloHMM
This class implements an (higher order) HMM that contains multi-dimensional emissions described by a phylogenetic tree. |
Uses of TrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.mixture |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.trainable.mixture that implement TrainableStatisticalModel | |
---|---|
class |
AbstractMixtureTrainSM
This is the abstract class for all kinds of mixture models. |
class |
MixtureTrainSM
The class for a mixture model of any TrainableStatisticalModel s. |
class |
StrandTrainSM
This model handles sequences that can either lie on the forward strand or on the reverse complementary strand. |
Fields in de.jstacs.sequenceScores.statisticalModels.trainable.mixture declared as TrainableStatisticalModel | |
---|---|
protected TrainableStatisticalModel[] |
AbstractMixtureTrainSM.alternativeModel
The alternative models for the EM. |
protected TrainableStatisticalModel[] |
AbstractMixtureTrainSM.model
The model for the sequences. |
Methods in de.jstacs.sequenceScores.statisticalModels.trainable.mixture that return TrainableStatisticalModel | |
---|---|
TrainableStatisticalModel |
AbstractMixtureTrainSM.getModel(int i)
Returns a deep copy of the i -th model. |
TrainableStatisticalModel[] |
AbstractMixtureTrainSM.getModels()
Returns a deep copy of the models. |
Constructors in de.jstacs.sequenceScores.statisticalModels.trainable.mixture with parameters of type TrainableStatisticalModel | |
---|---|
AbstractMixtureTrainSM(int length,
TrainableStatisticalModel[] models,
boolean[] optimizeModel,
int dimension,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new AbstractMixtureTrainSM . |
|
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
double[] weights,
int starts,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates an instance using EM and fixed component probabilities. |
|
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
double[] weights,
int starts,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and fixed component probabilities. |
|
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new MixtureTrainSM . |
|
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
int starts,
double[] componentHyperParams,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates an instance using EM and estimating the component probabilities. |
|
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
int starts,
double[] componentHyperParams,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and sampling the component probabilities. |
|
StrandTrainSM(TrainableStatisticalModel model,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double forwardStrandProb,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new StrandTrainSM . |
|
StrandTrainSM(TrainableStatisticalModel model,
int starts,
double[] componentHyperParams,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates an instance using EM and estimating the component probabilities. |
|
StrandTrainSM(TrainableStatisticalModel model,
int starts,
double[] componentHyperParams,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and sampling the component probabilities. |
|
StrandTrainSM(TrainableStatisticalModel model,
int starts,
double forwardStrandProb,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates an instance using EM and fixed component probabilities. |
|
StrandTrainSM(TrainableStatisticalModel model,
int starts,
double forwardStrandProb,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and fixed component probabilities. |
Uses of TrainableStatisticalModel in de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif that implement TrainableStatisticalModel | |
---|---|
class |
HiddenMotifMixture
This is the main class that every generative motif discoverer should implement. |
class |
ZOOPSTrainSM
This class enables the user to search for a single motif in a sequence. |
Constructors in de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif with parameters of type TrainableStatisticalModel | |
---|---|
HiddenMotifMixture(TrainableStatisticalModel[] models,
boolean[] optimzeArray,
int components,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
PositionPrior posPrior,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new HiddenMotifMixture . |
|
ZOOPSTrainSM(TrainableStatisticalModel motif,
TrainableStatisticalModel bg,
boolean trainOnlyMotifModel,
int starts,
double[] componentHyperParams,
double[] weights,
PositionPrior posPrior,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new ZOOPSTrainSM . |
|
ZOOPSTrainSM(TrainableStatisticalModel motif,
TrainableStatisticalModel bg,
boolean trainOnlyMotifModel,
int starts,
double[] componentHyperParams,
PositionPrior posPrior,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates a new ZOOPSTrainSM using EM and estimating
the probability for finding a motif. |
|
ZOOPSTrainSM(TrainableStatisticalModel motif,
TrainableStatisticalModel bg,
boolean trainOnlyMotifModel,
int starts,
double motifProb,
PositionPrior posPrior,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates a new ZOOPSTrainSM using EM and fixed
probability for finding a motif. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |