|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |
Packages that use GalaxyConvertible | |
---|---|
de.jstacs.algorithms.optimization.termination | Provides classes for termination conditions that can be used in algorithms |
de.jstacs.classifiers.assessment | This package allows to assess classifiers. |
de.jstacs.classifiers.differentiableSequenceScoreBased | Provides the classes for Classifier s that are based on SequenceScore s. |
de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix | Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModel s by
a unified generative-discriminative learning principle |
de.jstacs.classifiers.differentiableSequenceScoreBased.sampling | Provides the classes for AbstractScoreBasedClassifier s that are based on
SamplingDifferentiableStatisticalModel s
and that sample parameters using the Metropolis-Hastings algorithm. |
de.jstacs.classifiers.performanceMeasures | This package provides the implementations of performance measures that can be used to assess any classifier |
de.jstacs.data | Provides classes for the representation of data. |
de.jstacs.data.alphabets | Provides classes for the representation of discrete and continuous alphabets, including a DNAAlphabet for the most common case of DNA-sequences |
de.jstacs.parameters | This package provides classes for parameters that establish a general convention for the description of parameters
as defined in the Parameter -interface. |
de.jstacs.parameters.validation | Provides classes for the validation of Parameter values |
de.jstacs.sampling | This package contains many classes that can be used while a sampling. |
de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels | Provides DifferentiableStatisticalModel s that are directed graphical models. |
de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures | Provides the facilities to learn the structure of a BayesianNetworkDiffSM . |
de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures | Provides the facilities to learn the structure of a BayesianNetworkDiffSM as
a Bayesian tree using a number of measures to define a rating of structures |
de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures | Provides the facilities to learn the structure of a BayesianNetworkDiffSM as
a permuted Markov model using a number of measures to define a rating of structures |
de.jstacs.sequenceScores.statisticalModels.trainable.discrete | |
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.parameters | |
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters | |
de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training | The package provides all classes used to determine the training algorithm of a hidden Markov model |
Uses of GalaxyConvertible in de.jstacs.algorithms.optimization.termination |
---|
Uses of GalaxyConvertible in de.jstacs.classifiers.assessment |
---|
Classes in de.jstacs.classifiers.assessment that implement GalaxyConvertible | |
---|---|
class |
ClassifierAssessmentAssessParameterSet
This class is the superclass used by all ClassifierAssessmentAssessParameterSet s. |
class |
KFoldCrossValidationAssessParameterSet
This class implements a ClassifierAssessmentAssessParameterSet that
must be used to call method assess( ... ) of a
KFoldCrossValidation . |
class |
RepeatedHoldOutAssessParameterSet
This class implements a ClassifierAssessmentAssessParameterSet that
must be used to call method assess( ... ) of a
RepeatedHoldOutExperiment . |
class |
RepeatedSubSamplingAssessParameterSet
This class implements a ClassifierAssessmentAssessParameterSet that
must be used to call method assess( ... ) of a
RepeatedSubSamplingExperiment . |
class |
Sampled_RepeatedHoldOutAssessParameterSet
This class implements a ClassifierAssessmentAssessParameterSet that
must be used to call the method assess( ... ) of a
Sampled_RepeatedHoldOutExperiment . |
Uses of GalaxyConvertible in de.jstacs.classifiers.differentiableSequenceScoreBased |
---|
Classes in de.jstacs.classifiers.differentiableSequenceScoreBased that implement GalaxyConvertible | |
---|---|
class |
ScoreClassifierParameterSet
A set of Parameter s for any
ScoreClassifier . |
Uses of GalaxyConvertible in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix |
---|
Classes in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix that implement GalaxyConvertible | |
---|---|
class |
GenDisMixClassifierParameterSet
This class contains the parameters for the GenDisMixClassifier . |
Uses of GalaxyConvertible in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling |
---|
Classes in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling that implement GalaxyConvertible | |
---|---|
class |
SamplingGenDisMixClassifierParameterSet
ParameterSet to instantiate a SamplingGenDisMixClassifier . |
class |
SamplingScoreBasedClassifierParameterSet
ParameterSet to instantiate a SamplingScoreBasedClassifier . |
Uses of GalaxyConvertible in de.jstacs.classifiers.performanceMeasures |
---|
Classes in de.jstacs.classifiers.performanceMeasures that implement GalaxyConvertible | |
---|---|
class |
AbstractPerformanceMeasure
This class is the abstract super class of any performance measure used to evaluate an AbstractClassifier . |
class |
AucPR
This class implements the area under curve of the precision-recall curve. |
class |
AucROC
This class implements the area under curve of the Receiver Operating Characteristics curve. |
class |
ClassificationRate
This class implements the classification rate, i.e. |
class |
ConfusionMatrix
This class implements the performance measure confusion matrix. |
class |
FalsePositiveRateForFixedSensitivity
This class implements the false positive rate for a fixed sensitivity. |
class |
MaximumCorrelationCoefficient
This class implements the maximum of the correlation coefficient ![]() |
class |
MaximumFMeasure
Computes the maximum of the general F-measure given a positive real parameter ![]() |
class |
MaximumNumericalTwoClassMeasure
This class prepares everything for an easy implementation of a maximum of any numerical performance measure. |
class |
NumericalPerformanceMeasureParameterSet
This class implements a container for NumericalPerformanceMeasure s that can be used, for instance, in an repeated assessment,
(cf. |
class |
PerformanceMeasureParameterSet
This class implements a container of AbstractPerformanceMeasure s that can be used
in AbstractClassifier.evaluate(PerformanceMeasureParameterSet, boolean, de.jstacs.data.DataSet...) . |
class |
PositivePredictiveValueForFixedSensitivity
This class implements the positive predictive value for a fixed sensitivity. |
class |
PRCurve
This class implements the precision-recall curve and its area under the curve. |
class |
ROCCurve
This class implements the Receiver Operating Characteristics curve and the area under the curve. |
class |
SensitivityForFixedSpecificity
This class implements the sensitivity for a fixed specificity. |
class |
TwoClassAbstractPerformanceMeasure
This class is the abstract super class of any performance measure that can only be computed for binary classifiers. |
Uses of GalaxyConvertible in de.jstacs.data |
---|
Classes in de.jstacs.data that implement GalaxyConvertible | |
---|---|
static class |
AlphabetContainer.AbstractAlphabetContainerParameterSet<T extends AlphabetContainer>
This class is the super class of any InstanceParameterSet for AlphabetContainer . |
class |
AlphabetContainerParameterSet
Class for the AlphabetContainerParameterSet.SectionDefinedAlphabetParameterSet of an AlphabetContainer . |
static class |
AlphabetContainerParameterSet.AlphabetArrayParameterSet
Class for the parameters of an array of Alphabet s of defined
length. |
static class |
AlphabetContainerParameterSet.SectionDefinedAlphabetParameterSet
Class for the parameter set of an array of Alphabet s where each
Alphabet may be used for one or more sections of positions. |
Uses of GalaxyConvertible in de.jstacs.data.alphabets |
---|
Classes in de.jstacs.data.alphabets that implement GalaxyConvertible | |
---|---|
static class |
Alphabet.AlphabetParameterSet<T extends Alphabet>
The super class for the InstanceParameterSet of any
Alphabet . |
static class |
ContinuousAlphabet.ContinuousAlphabetParameterSet
Class for the ParameterSet of a
ContinuousAlphabet . |
static class |
DiscreteAlphabet.DiscreteAlphabetParameterSet
Class for the ParameterSet of a
DiscreteAlphabet . |
static class |
DNAAlphabet.DNAAlphabetParameterSet
The parameter set for a DNAAlphabet . |
static class |
DNAAlphabetContainer.DNAAlphabetContainerParameterSet
This class implements a singleton for the ParameterSet of a DNAAlphabetContainer . |
static class |
GenericComplementableDiscreteAlphabet.GenericComplementableDiscreteAlphabetParameterSet
This class is used as container for the parameters of a GenericComplementableDiscreteAlphabet . |
static class |
ProteinAlphabet.ProteinAlphabetParameterSet
The parameter set for a ProteinAlphabet . |
Uses of GalaxyConvertible in de.jstacs.parameters |
---|
Classes in de.jstacs.parameters that implement GalaxyConvertible | |
---|---|
class |
AbstractSelectionParameter
Class for a collection parameter, i.e. a parameter that provides some collection of possible values the user can choose from. |
class |
ArrayParameterSet
Class for a ParameterSet that consists of a length-Parameter
that defines the length of the array and an array of
ParameterSetContainer s of this length. |
class |
EnumParameter
This class implements a SelectionParameter based on an Enum . |
class |
ExpandableParameterSet
A class for a ParameterSet that can be expanded by additional
Parameter s at runtime. |
class |
FileParameter
Class for a Parameter that represents a local file. |
class |
InstanceParameterSet<T extends InstantiableFromParameterSet>
Container class for a set of Parameter s that can be used to
instantiate another class. |
class |
MultiSelectionParameter
Class for a Parameter that provides a collection of possible values. |
class |
ParameterSet
(Container) class for a set of Parameter s. |
class |
ParameterSetContainer
Class for a ParameterSetContainer that contains a
ParameterSet as value. |
class |
RangeParameter
Class for a parameter wrapper that allows SimpleParameter s to be set
to a set of values. |
class |
SelectionParameter
Class for a collection parameter, i.e. a parameter that provides some collection of possible values the user can choose from. |
class |
SequenceScoringParameterSet<T extends InstantiableFromParameterSet>
Abstract class for a ParameterSet containing all parameters necessary
to construct an Object that implements
InstantiableFromParameterSet . |
class |
SimpleParameter
Class for a "simple" parameter. |
class |
SimpleParameterSet
Class for a ParameterSet that is constructed from an array of Parameter s. |
Uses of GalaxyConvertible in de.jstacs.parameters.validation |
---|
Classes in de.jstacs.parameters.validation that implement GalaxyConvertible | |
---|---|
class |
NumberValidator<E extends Comparable<? extends Number>>
Class that validates all subclasses of Number that implement
Comparable (e.g. |
Uses of GalaxyConvertible in de.jstacs.sampling |
---|
Classes in de.jstacs.sampling that implement GalaxyConvertible | |
---|---|
class |
AbstractBurnInTestParameterSet
Class for the parameters of a AbstractBurnInTest . |
class |
VarianceRatioBurnInTestParameterSet
Class for the parameters of a VarianceRatioBurnInTest . |
Uses of GalaxyConvertible in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels that implement GalaxyConvertible | |
---|---|
class |
BayesianNetworkDiffSMParameterSet
Class for the parameters of a BayesianNetworkDiffSM . |
Uses of GalaxyConvertible in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures that implement GalaxyConvertible | |
---|---|
static class |
InhomogeneousMarkov.InhomogeneousMarkovParameterSet
Class for an InstanceParameterSet that defines the parameters of
an InhomogeneousMarkov structure Measure . |
static class |
Measure.MeasureParameterSet
This class is the super class of any ParameterSet that can be used to instantiate a Measure . |
Uses of GalaxyConvertible in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.btMeasures that implement GalaxyConvertible | |
---|---|
static class |
BTExplainingAwayResidual.BTExplainingAwayResidualParameterSet
Class for the parameters of a BTExplainingAwayResidual structure
Measure . |
static class |
BTMutualInformation.BTMutualInformationParameterSet
Class for the parameters of a BTMutualInformation structure
Measure . |
Uses of GalaxyConvertible in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures.pmmMeasures that implement GalaxyConvertible | |
---|---|
static class |
PMMExplainingAwayResidual.PMMExplainingAwayResidualParameterSet
Class for the parameters of a PMMExplainingAwayResidual structure
Measure . |
static class |
PMMMutualInformation.PMMMutualInformationParameterSet
Class for the parameters of a PMMMutualInformation structure
Measure . |
Uses of GalaxyConvertible in de.jstacs.sequenceScores.statisticalModels.trainable.discrete |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.trainable.discrete that implement GalaxyConvertible | |
---|---|
class |
DGTrainSMParameterSet<T extends DiscreteGraphicalTrainSM>
The super ParameterSet for any parameter set of
a DiscreteGraphicalTrainSM . |
Uses of GalaxyConvertible in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.parameters |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous.parameters that implement GalaxyConvertible | |
---|---|
class |
HomMMParameterSet
This class implements a container for all parameters of a homogeneous Markov model. |
class |
HomogeneousTrainSMParameterSet
This class implements a container for all parameters of any homogeneous model. |
Uses of GalaxyConvertible in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters that implement GalaxyConvertible | |
---|---|
class |
BayesianNetworkTrainSMParameterSet
The ParameterSet for the class
BayesianNetworkTrainSM . |
class |
FSDAGModelForGibbsSamplingParameterSet
The class for the parameters of a FSDAGModelForGibbsSampling . |
class |
FSDAGTrainSMParameterSet
The class for the parameters of a FSDAGTrainSM (fixed
structure directed acyclic graphical
model). |
class |
IDGTrainSMParameterSet
This is the abstract container of parameters that is a root container for all inhomogeneous discrete graphical model parameter containers. |
Uses of GalaxyConvertible in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training |
---|
Classes in de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training that implement GalaxyConvertible | |
---|---|
class |
BaumWelchParameterSet
This class implements an HMMTrainingParameterSet for the Baum-Welch training of an AbstractHMM . |
class |
HMMTrainingParameterSet
This class implements an abstract ParameterSet that is used for the training of an AbstractHMM . |
class |
MaxHMMTrainingParameterSet
This class is the super class for any HMMTrainingParameterSet that
is used for a maximizing training algorithm of a hidden Markov model. |
class |
MultiThreadedTrainingParameterSet
This class is the super class for any MaxHMMTrainingParameterSet that
is used for a multi-threaded maximizing training algorithm of a hidden Markov model. |
class |
NumericalHMMTrainingParameterSet
This class implements an ParameterSet for numerical training of an AbstractHMM . |
class |
SamplingHMMTrainingParameterSet
This class contains the parameters for training training an AbstractHMM using a sampling strategy. |
class |
ViterbiParameterSet
This class implements an ParameterSet for the viterbi training of an AbstractHMM . |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |