|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |
Packages that use Sample | |
---|---|
de.jstacs.classifier | This package provides the framework for any classifier. |
de.jstacs.classifier.assessment | This package allows to assess classifiers. |
de.jstacs.classifier.modelBased | Provides the classes for Classifier s that are based on Model s |
de.jstacs.classifier.scoringFunctionBased | Provides the classes for Classifier s that are based on ScoringFunction s. |
de.jstacs.classifier.scoringFunctionBased.gendismix | Provides an implementation of a classifier that allows to train the parameters of a set of NormalizableScoringFunction s by
a unified generative-discriminative learning principle |
de.jstacs.classifier.scoringFunctionBased.sampling | Provides the classes for AbstractScoreBasedClassifier s that are based on SamplingScoringFunction s and that sample parameters
using the Metropolis-Hastings algorithm. |
de.jstacs.classifier.utils | Provides some useful classes for working with classifiers |
de.jstacs.data | Provides classes for the representation of data. |
de.jstacs.data.bioJava | Provides an adapter between the representation of data in BioJava and the representation used in Jstacs. |
de.jstacs.data.sequences | Provides classes for representing sequences. |
de.jstacs.models | Provides the interface Model and its abstract implementation AbstractModel , which is the super class of all other models. |
de.jstacs.models.discrete | |
de.jstacs.models.discrete.homogeneous | |
de.jstacs.models.discrete.inhomogeneous | This package contains various inhomogeneous models. |
de.jstacs.models.discrete.inhomogeneous.shared | |
de.jstacs.models.hmm | The package provides all interfaces and classes for a hidden Markov model (HMM). |
de.jstacs.models.hmm.models | The package provides different implementations of hidden Markov models based on AbstractHMM |
de.jstacs.models.mixture | This package is the super package for any mixture model. |
de.jstacs.models.mixture.motif | |
de.jstacs.models.utils | |
de.jstacs.motifDiscovery | This package provides the framework including the interface for any de novo motif discoverer |
de.jstacs.results | This package provides classes for results and sets of results. |
de.jstacs.sampling | This package contains many classes that can be used while a sampling. |
de.jstacs.scoringFunctions | Provides ScoringFunction s that can be used in a ScoreClassifier . |
de.jstacs.scoringFunctions.directedGraphicalModels | Provides ScoringFunction s that are equivalent to directed graphical models. |
de.jstacs.scoringFunctions.directedGraphicalModels.structureLearning.measures | Provides the facilities to learn the structure of a BayesianNetworkScoringFunction . |
de.jstacs.scoringFunctions.directedGraphicalModels.structureLearning.measures.btMeasures | Provides the facilities to learn the structure of a BayesianNetworkScoringFunction as
a Bayesian tree using a number of measures to define a rating of structures |
de.jstacs.scoringFunctions.directedGraphicalModels.structureLearning.measures.pmmMeasures | Provides the facilities to learn the structure of a BayesianNetworkScoringFunction as
a permuted Markov model using a number of measures to define a rating of structures |
de.jstacs.scoringFunctions.homogeneous | Provides ScoringFunction s that are homogeneous, i.e. model probabilities or scores independent of the position within a sequence |
de.jstacs.scoringFunctions.mix | Provides ScoringFunction s that are mixtures of other ScoringFunction s. |
de.jstacs.scoringFunctions.mix.motifSearch |
Uses of Sample in de.jstacs.classifier |
---|
Methods in de.jstacs.classifier that return Sample | |
---|---|
Sample[] |
MappingClassifier.mapSample(Sample[] s)
This method maps the given Sample s to the internal classes. |
Methods in de.jstacs.classifier with parameters of type Sample | |
---|---|
protected void |
AbstractScoreBasedClassifier.check(Sample s)
This method checks if the given Sample can be used. |
byte[] |
AbstractClassifier.classify(Sample s)
This method classifies all sequences of a sample and returns an array of indices of the classes to which the respective sequences are assigned with for each index i in the array
0 < i < getNumberOfClasses() . |
NumericalResultSet |
AbstractClassifier.evaluate(MeasureParameters params,
boolean exceptionIfNotComputeable,
Sample... s)
This method evaluates the classifier and computes all numerical results as, for instance, the sensitivity for a given specificity, the area under the ROC curve and so on. |
ResultSet |
AbstractClassifier.evaluateAll(MeasureParameters params,
boolean exceptionIfNotComputeable,
Sample... s)
This method evaluates the classifier and computes all results. |
protected NumericalResult |
AbstractClassifier.getClassificationRate(Sample[] s)
This method computes the classification rate for a given array of samples. |
double[] |
AbstractScoreBasedClassifier.getPValue(Sample candidates,
Sample bg)
Returns the p-values for all Sequence s in the Sample
candidates with respect to a given background Sample
. |
double |
AbstractScoreBasedClassifier.getPValue(Sequence candidate,
Sample bg)
Returns the p-value for a Sequence candidate with
respect to a given background Sample . |
protected LinkedList<? extends Result> |
MappingClassifier.getResults(Sample[] s,
MeasureParameters params,
boolean exceptionIfNotComputeable,
boolean all)
|
protected LinkedList<? extends Result> |
AbstractScoreBasedClassifier.getResults(Sample[] s,
MeasureParameters params,
boolean exceptionIfNotComputeable,
boolean all)
|
protected LinkedList<? extends Result> |
AbstractClassifier.getResults(Sample[] s,
MeasureParameters params,
boolean exceptionIfNotComputeable,
boolean all)
This method computes the results for any evaluation of the classifier. |
double[] |
AbstractScoreBasedClassifier.getScores(Sample s)
This method returns the scores of the classifier for any Sequence
in the Sample . |
Sample[] |
MappingClassifier.mapSample(Sample[] s)
This method maps the given Sample s to the internal classes. |
ConfusionMatrix |
AbstractScoreBasedClassifier.test(Sample... testData)
|
ConfusionMatrix |
AbstractClassifier.test(Sample... testData)
This method computes the confusion matrix for a given array of test data. |
void |
AbstractClassifier.train(Sample... s)
Trains the AbstractClassifier object given the data as
Sample s. |
void |
MappingClassifier.train(Sample[] s,
double[][] weights)
|
abstract void |
AbstractClassifier.train(Sample[] s,
double[][] weights)
This method trains a classifier over an array of weighted Sample
s. |
Uses of Sample in de.jstacs.classifier.assessment |
---|
Methods in de.jstacs.classifier.assessment with parameters of type Sample | |
---|---|
ListResult |
ClassifierAssessment.assess(MeasureParameters mp,
ClassifierAssessmentAssessParameterSet assessPS,
ProgressUpdater pU,
Sample... s)
Assesses the contained classifiers. |
ListResult |
ClassifierAssessment.assess(MeasureParameters mp,
ClassifierAssessmentAssessParameterSet assessPS,
ProgressUpdater pU,
Sample[][]... s)
Assesses the contained classifiers. |
ListResult |
ClassifierAssessment.assess(MeasureParameters mp,
ClassifierAssessmentAssessParameterSet assessPS,
Sample... s)
Assesses the contained classifiers. |
ListResult |
KFoldCrossValidation.assessWithPredefinedSplits(MeasureParameters mp,
ClassifierAssessmentAssessParameterSet caaps,
ProgressUpdater pU,
Sample[]... splitData)
This method implements a k-fold crossvalidation on previously split data. |
protected void |
Sampled_RepeatedHoldOutExperiment.evaluateClassifier(MeasureParameters mp,
ClassifierAssessmentAssessParameterSet assessPS,
Sample[] s,
ProgressUpdater pU)
|
protected void |
RepeatedSubSamplingExperiment.evaluateClassifier(MeasureParameters mp,
ClassifierAssessmentAssessParameterSet assessPS,
Sample[] s,
ProgressUpdater pU)
Evaluates the classifier. |
protected void |
RepeatedHoldOutExperiment.evaluateClassifier(MeasureParameters mp,
ClassifierAssessmentAssessParameterSet assessPS,
Sample[] s,
ProgressUpdater pU)
Evaluates the classifier. |
protected void |
KFoldCrossValidation.evaluateClassifier(MeasureParameters mp,
ClassifierAssessmentAssessParameterSet assessPS,
Sample[] s,
ProgressUpdater pU)
Evaluates a classifier. |
protected abstract void |
ClassifierAssessment.evaluateClassifier(MeasureParameters mp,
ClassifierAssessmentAssessParameterSet assessPS,
Sample[] s,
ProgressUpdater pU)
This method must be implemented in all subclasses. |
protected void |
ClassifierAssessment.prepareAssessment(Sample... s)
Prepares an assessment. |
protected void |
ClassifierAssessment.test(MeasureParameters mp,
boolean exception,
Sample... testS)
Uses the given test samples to call the evaluate( ... )
-methods of the local AbstractClassifier s. |
protected void |
ClassifierAssessment.train(Sample... trainS)
Trains the local classifiers using the given training samples. |
Uses of Sample in de.jstacs.classifier.modelBased |
---|
Methods in de.jstacs.classifier.modelBased with parameters of type Sample | |
---|---|
byte[] |
ModelBasedClassifier.classify(Sample s)
|
double[] |
ModelBasedClassifier.getScores(Sample s)
|
void |
ModelBasedClassifier.train(Sample[] s,
double[][] weights)
|
Uses of Sample in de.jstacs.classifier.scoringFunctionBased |
---|
Fields in de.jstacs.classifier.scoringFunctionBased declared as Sample | |
---|---|
protected Sample[] |
AbstractOptimizableFunction.data
The data that is used to evaluate this function. |
Methods in de.jstacs.classifier.scoringFunctionBased that return Sample | |
---|---|
abstract Sample[] |
OptimizableFunction.getData()
Returns the data for each class used in this OptimizableFunction . |
Sample[] |
AbstractOptimizableFunction.getData()
|
Methods in de.jstacs.classifier.scoringFunctionBased with parameters of type Sample | |
---|---|
protected void |
ScoreClassifier.createStructure(Sample[] data,
double[][] weights)
Creates the structure that will be used in the optimization. |
protected void |
ScoreClassifier.createStructure(Sample[] data,
double[][] weights,
boolean initRandomly)
Creates the structure that will be used in the optimization. |
protected double |
ScoreClassifier.doOptimization(Sample[] reduced,
double[][] newWeights)
This method does the optimization of the train -method |
protected abstract SFBasedOptimizableFunction |
ScoreClassifier.getFunction(Sample[] data,
double[][] weights)
Returns the function that should be optimized. |
abstract void |
OptimizableFunction.setDataAndWeights(Sample[] data,
double[][] weights)
This method sets the data set and the sequence weights to be used. |
void |
AbstractOptimizableFunction.setDataAndWeights(Sample[] data,
double[][] weights)
|
void |
AbstractMultiThreadedOptimizableFunction.setDataAndWeights(Sample[] data,
double[][] weights)
|
void |
ScoreClassifier.train(Sample[] data,
double[][] weights)
|
Constructors in de.jstacs.classifier.scoringFunctionBased with parameters of type Sample | |
---|---|
AbstractMultiThreadedOptimizableFunction(int threads,
Sample[] data,
double[][] weights,
boolean norm,
boolean freeParams)
The constructor for an multi-threaded instance. |
|
AbstractOptimizableFunction(Sample[] data,
double[][] weights,
boolean norm,
boolean freeParams)
The constructor creates an instance using the given weighted data. |
|
SFBasedOptimizableFunction(int threads,
ScoringFunction[] score,
Sample[] data,
double[][] weights,
LogPrior prior,
boolean norm,
boolean freeParams)
Creates an instance with the underlying infrastructure. |
Uses of Sample in de.jstacs.classifier.scoringFunctionBased.gendismix |
---|
Methods in de.jstacs.classifier.scoringFunctionBased.gendismix that return Sample | |
---|---|
Sample[] |
OneSampleLogGenDisMixFunction.getData()
|
Methods in de.jstacs.classifier.scoringFunctionBased.gendismix with parameters of type Sample | |
---|---|
protected LogGenDisMixFunction |
GenDisMixClassifier.getFunction(Sample[] data,
double[][] weights)
|
void |
OneSampleLogGenDisMixFunction.setDataAndWeights(Sample[] data,
double[][] weights)
|
Constructors in de.jstacs.classifier.scoringFunctionBased.gendismix with parameters of type Sample | |
---|---|
LogGenDisMixFunction(int threads,
ScoringFunction[] score,
Sample[] data,
double[][] weights,
LogPrior prior,
double[] beta,
boolean norm,
boolean freeParams)
The constructor for creating an instance that can be used in an Optimizer . |
|
OneSampleLogGenDisMixFunction(int threads,
ScoringFunction[] score,
Sample data,
double[][] weights,
LogPrior prior,
double[] beta,
boolean norm,
boolean freeParams)
The constructor for creating an instance that can be used in an Optimizer . |
Uses of Sample in de.jstacs.classifier.scoringFunctionBased.sampling |
---|
Methods in de.jstacs.classifier.scoringFunctionBased.sampling with parameters of type Sample | |
---|---|
void |
SamplingScoreBasedClassifier.doSingleSampling(Sample[] s,
double[][] weights,
int numSteps,
String outfilePrefix)
Does a single sampling run for a predefined number of steps. |
protected abstract SFBasedOptimizableFunction |
SamplingScoreBasedClassifier.getFunction(Sample[] data,
double[][] weights)
Returns the function that should be sampled from. |
protected SFBasedOptimizableFunction |
SamplingGenDisMixClassifier.getFunction(Sample[] data,
double[][] weights)
|
double[] |
SamplingScoreBasedClassifier.getScores(Sample s)
|
void |
SamplingScoreBasedClassifier.train(Sample[] s,
double[][] weights)
|
Uses of Sample in de.jstacs.classifier.utils |
---|
Methods in de.jstacs.classifier.utils with parameters of type Sample | |
---|---|
static ImageResult |
ClassificationVisualizer.getScatterplot(AbstractScoreBasedClassifier cl1,
AbstractScoreBasedClassifier cl2,
Sample class0,
Sample class1,
REnvironment e,
boolean drawThreshold)
This method returns an ImageResult containing a scatter plot of
the scores for the given classifiers cl1 and
cl2 . |
static ImageResult |
ClassificationVisualizer.plotScores(AbstractScoreBasedClassifier cl,
Sample class0,
Sample class1,
REnvironment e,
int bins,
double density,
String plotOptions)
This method returns an ImageResult containing a plot of the
histograms of the scores. |
static void |
ClassificationVisualizer.plotScores(AbstractScoreBasedClassifier cl,
Sample class0,
Sample class1,
REnvironment e,
int bins,
double density,
String plotOptions,
String fName)
This method creates a pdf containing a plot of the histograms of the scores. |
Uses of Sample in de.jstacs.data |
---|
Subclasses of Sample in de.jstacs.data | |
---|---|
class |
DNASample
This class exist for convenience to allow the user an easy creation of Sample s of DNA Sequence s. |
Methods in de.jstacs.data that return Sample | |
---|---|
static Sample |
Sample.diff(Sample data,
Sample... samples)
This method computes the difference between the Sample data and
the Sample s samples . |
Sample |
Sample.getCompositeSample(int[] starts,
int[] lengths)
This method enables you to use only composite Sequence s of all
elements in the current Sample . |
Sample |
Sample.getInfixSample(int start,
int length)
This method enables you to use only an infix of all elements, i.e. the Sequence s, in the current Sample . |
Sample |
Sample.getReverseComplementarySample()
Returns a Sample that contains the reverse complement of all Sequence s in
this Sample . |
Sample |
Sample.WeightedSampleFactory.getSample()
Returns the Sample , where each Sequence occurs only
once. |
static Sample |
DinucleotideProperty.getSampleForProperty(Sample original,
DinucleotideProperty... properties)
Creates a new Sample by converting each Sequence in original to the DinucleotideProperty s properties and setting these as ReferenceSequenceAnnotation of each original sequence. |
static Sample |
DinucleotideProperty.getSampleForProperty(Sample original,
DinucleotideProperty.Smoothing smoothing,
boolean addToAnnotation,
DinucleotideProperty... properties)
Creates a new Sample by converting each Sequence in original to the DinucleotideProperty s properties and adding or setting these as ReferenceSequenceAnnotation of each original sequence. |
static Sample |
DinucleotideProperty.getSampleForProperty(Sample original,
DinucleotideProperty.Smoothing smoothing,
boolean originalAsAnnotation,
DinucleotideProperty property)
Creates a new Sample by converting each Sequence in original to the DinucleotideProperty property using the DinucleotideProperty.Smoothing smoothing. |
static Sample |
DinucleotideProperty.getSampleForProperty(Sample original,
DinucleotideProperty property)
Creates a new Sample by converting each Sequence in original to the DinucleotideProperty property . |
Sample |
Sample.getSuffixSample(int start)
This method enables you to use only a suffix of all elements, i.e. the Sequence , in the current Sample . |
static Sample |
Sample.intersection(Sample... samples)
This method computes the intersection between all elements/ Sample
s of the array, i.e. it returns a Sample containing only
Sequence s that are contained in all Sample s of the array. |
Sample[] |
Sample.partition(double p,
Sample.PartitionMethod method,
int subsequenceLength)
This method partitions the elements, i.e. the Sequence s, of the
Sample in two distinct parts. |
Sample[] |
Sample.partition(int k,
Sample.PartitionMethod method)
This method partitions the elements, i.e. the Sequence s, of the
Sample in k distinct parts. |
Sample[] |
Sample.partition(Sample.PartitionMethod method,
double... percentage)
This method partitions the elements, i.e. the Sequence s, of the
Sample in distinct parts where each part holds the corresponding
percentage given in the array percentage . |
Sample |
Sample.subSampling(int number)
Randomly samples elements, i.e. |
static Sample |
Sample.union(Sample... s)
Unites all Sample s of the array s . |
static Sample |
Sample.union(Sample[] s,
boolean[] in)
This method unites all Sample s of the array s
regarding the array in . |
static Sample |
Sample.union(Sample[] s,
boolean[] in,
int subsequenceLength)
This method unites all Sample s of the array s
regarding the array in and sets the element length in the
united Sample to subsequenceLength . |
static Sample |
Sample.union(Sample[] s,
int subsequenceLength)
This method unites all Sample s of the array s and
sets the element length in the united sample to
subsequenceLength . |
Methods in de.jstacs.data with parameters of type Sample | |
---|---|
static Sample |
Sample.diff(Sample data,
Sample... samples)
This method computes the difference between the Sample data and
the Sample s samples . |
static Sample |
Sample.diff(Sample data,
Sample... samples)
This method computes the difference between the Sample data and
the Sample s samples . |
static String |
Sample.getAnnotation(Sample... s)
Returns the annotation for an array of Sample s. |
static ImageResult |
DinucleotideProperty.getPropertyImage(Sample original,
DinucleotideProperty prop,
DinucleotideProperty.Smoothing smoothing,
REnvironment re,
int xLeft,
String pltOptions,
int width,
int height)
|
static Sample |
DinucleotideProperty.getSampleForProperty(Sample original,
DinucleotideProperty... properties)
Creates a new Sample by converting each Sequence in original to the DinucleotideProperty s properties and setting these as ReferenceSequenceAnnotation of each original sequence. |
static Sample |
DinucleotideProperty.getSampleForProperty(Sample original,
DinucleotideProperty.Smoothing smoothing,
boolean addToAnnotation,
DinucleotideProperty... properties)
Creates a new Sample by converting each Sequence in original to the DinucleotideProperty s properties and adding or setting these as ReferenceSequenceAnnotation of each original sequence. |
static Sample |
DinucleotideProperty.getSampleForProperty(Sample original,
DinucleotideProperty.Smoothing smoothing,
boolean originalAsAnnotation,
DinucleotideProperty property)
Creates a new Sample by converting each Sequence in original to the DinucleotideProperty property using the DinucleotideProperty.Smoothing smoothing. |
static Sample |
DinucleotideProperty.getSampleForProperty(Sample original,
DinucleotideProperty property)
Creates a new Sample by converting each Sequence in original to the DinucleotideProperty property . |
static Sample |
Sample.intersection(Sample... samples)
This method computes the intersection between all elements/ Sample
s of the array, i.e. it returns a Sample containing only
Sequence s that are contained in all Sample s of the array. |
static Sample |
Sample.union(Sample... s)
Unites all Sample s of the array s . |
static Sample |
Sample.union(Sample[] s,
boolean[] in)
This method unites all Sample s of the array s
regarding the array in . |
static Sample |
Sample.union(Sample[] s,
boolean[] in,
int subsequenceLength)
This method unites all Sample s of the array s
regarding the array in and sets the element length in the
united Sample to subsequenceLength . |
static Sample |
Sample.union(Sample[] s,
int subsequenceLength)
This method unites all Sample s of the array s and
sets the element length in the united sample to
subsequenceLength . |
Uses of Sample in de.jstacs.data.bioJava |
---|
Methods in de.jstacs.data.bioJava that return Sample | |
---|---|
static Sample |
BioJavaAdapter.sequenceIteratorToSample(SequenceIterator it,
FeatureFilter filter)
This method creates a new Sample from a SequenceIterator . |
Methods in de.jstacs.data.bioJava with parameters of type Sample | |
---|---|
static SequenceIterator |
BioJavaAdapter.sampleToSequenceIterator(Sample sample,
boolean flat)
Creates a SequenceIterator from the Sample
sample preserving as much annotation as possible. |
Uses of Sample in de.jstacs.data.sequences |
---|
Methods in de.jstacs.data.sequences that return Sample | |
---|---|
static Sample |
SparseSequence.getSample(AlphabetContainer con,
AbstractStringExtractor... se)
This method allows to create a Sample containing SparseSequence s. |
Uses of Sample in de.jstacs.models |
---|
Methods in de.jstacs.models that return Sample | |
---|---|
Sample |
UniformModel.emitSample(int n,
int... lengths)
|
Sample |
Model.emitSample(int numberOfSequences,
int... seqLength)
This method returns a Sample object containing artificial
sequence(s). |
Sample |
AbstractModel.emitSample(int numberOfSequences,
int... seqLength)
|
Methods in de.jstacs.models with parameters of type Sample | |
---|---|
double[] |
Model.getLogProbFor(Sample data)
This method computes the logarithm of the probabilities of all sequences in the given sample. |
double[] |
AbstractModel.getLogProbFor(Sample data)
|
void |
Model.getLogProbFor(Sample data,
double[] res)
This method computes and stores the logarithm of the probabilities for any sequence in the sample in the given double -array. |
void |
AbstractModel.getLogProbFor(Sample data,
double[] res)
|
void |
Model.train(Sample data)
Trains the Model object given the data as Sample . |
void |
AbstractModel.train(Sample data)
|
void |
VariableLengthWrapperModel.train(Sample data,
double[] weights)
|
void |
UniformModel.train(Sample data,
double[] weights)
Deprecated. |
void |
NormalizableScoringFunctionModel.train(Sample data,
double[] weights)
|
void |
Model.train(Sample data,
double[] weights)
Trains the Model object given the data as Sample using
the specified weights. |
void |
CompositeModel.train(Sample data,
double[] weights)
|
Uses of Sample in de.jstacs.models.discrete |
---|
Methods in de.jstacs.models.discrete with parameters of type Sample | |
---|---|
static double |
ConstraintManager.countInhomogeneous(AlphabetContainer alphabets,
int length,
Sample data,
double[] weights,
boolean reset,
Constraint... constr)
Fills the (inhomogeneous) Constraint constr with the
weighted absolute frequencies of the Sample data . |
Uses of Sample in de.jstacs.models.discrete.homogeneous |
---|
Methods in de.jstacs.models.discrete.homogeneous that return Sample | |
---|---|
Sample |
HomogeneousModel.emitSample(int no,
int... length)
Creates a Sample of a given number of Sequence s from a
trained homogeneous model. |
Methods in de.jstacs.models.discrete.homogeneous with parameters of type Sample | |
---|---|
void |
HomogeneousModel.train(Sample[] data)
Trains the homogeneous model on all given Sample s. |
abstract void |
HomogeneousModel.train(Sample[] data,
double[][] weights)
Trains the homogeneous model using an array of weighted Sample s. |
void |
HomogeneousMM.train(Sample[] data,
double[][] weights)
|
void |
HomogeneousMM.train(Sample data,
double[] weights)
|
Uses of Sample in de.jstacs.models.discrete.inhomogeneous |
---|
Methods in de.jstacs.models.discrete.inhomogeneous that return Sample | |
---|---|
Sample |
DAGModel.emitSample(int n,
int... lengths)
|
Methods in de.jstacs.models.discrete.inhomogeneous with parameters of type Sample | |
---|---|
void |
FSDAGModelForGibbsSampling.drawParameters(Sample data,
double[] weights)
|
protected void |
DAGModel.drawParameters(Sample data,
double[] weights)
This method draws the parameter of the model from the likelihood or the posterior, respectively. |
void |
FSDAGModelForGibbsSampling.drawParameters(Sample data,
double[] weights,
int[][] graph)
|
void |
FSDAGModel.drawParameters(Sample data,
double[] weights,
int[][] graph)
This method draws the parameters of the model from the a posteriori density. |
protected void |
DAGModel.estimateParameters(Sample data,
double[] weights)
This method estimates the parameter of the model from the likelihood or the posterior, respectively. |
static double[][] |
TwoPointEvaluater.getMIInBits(Sample s,
double[] weights)
This method computes the pairwise mutual information (in bits) between the sequence positions. |
int[][] |
StructureLearner.getStructure(Sample data,
double[] weights,
StructureLearner.ModelType model,
byte order,
StructureLearner.LearningType method)
This method finds the optimal structure of a model by using a given learning method (in some sense). |
SymmetricTensor |
StructureLearner.getTensor(Sample data,
double[] weights,
byte order,
StructureLearner.LearningType method)
This method can be used to compute a Tensor that can be used to
determine the optimal structure. |
static void |
FSDAGModel.train(Model[] models,
int[][] graph,
double[][] weights,
Sample... data)
Computes the models with structure graph . |
void |
FSDAGModelForGibbsSampling.train(Sample data,
double[] weights)
|
void |
FSDAGModel.train(Sample data,
double[] weights)
|
void |
BayesianNetworkModel.train(Sample data,
double[] weights)
|
void |
FSDAGModelForGibbsSampling.train(Sample data,
double[] weights,
int[][] graph)
|
void |
FSDAGModel.train(Sample data,
double[] weights,
int[][] graph)
Computes the model with structure graph . |
Uses of Sample in de.jstacs.models.discrete.inhomogeneous.shared |
---|
Methods in de.jstacs.models.discrete.inhomogeneous.shared with parameters of type Sample | |
---|---|
void |
SharedStructureClassifier.train(Sample[] data,
double[][] weights)
|
Uses of Sample in de.jstacs.models.hmm |
---|
Methods in de.jstacs.models.hmm with parameters of type Sample | |
---|---|
String |
AbstractHMM.getGraphvizRepresentation(NumberFormat nf,
Sample data,
double[] weight,
boolean sameTypeSameRank)
This method returns a String representation of the structure that
can be used in Graphviz to create an image. |
double[][][] |
AbstractHMM.getLogStatePosteriorMatrixFor(Sample data)
This method returns the log state posteriors for all sequences of the sample data . |
double[][][] |
AbstractHMM.getStatePosteriorMatrixFor(Sample data)
This method returns the state posteriors for all sequences of the sample data . |
Pair<IntList,Double>[] |
AbstractHMM.getViterbiPathsFor(Sample data)
This method returns the viterbi paths and scores for all sequences of the sample data . |
void |
AbstractHMM.train(Sample data)
|
Uses of Sample in de.jstacs.models.hmm.models |
---|
Methods in de.jstacs.models.hmm.models that return Sample | |
---|---|
Sample |
HigherOrderHMM.emitSample(int numberOfSequences,
int... seqLength)
|
Methods in de.jstacs.models.hmm.models with parameters of type Sample | |
---|---|
protected void |
SamplingHigherOrderHMM.furtherInits(Sample data,
double[] weights)
This method allows the implementation of further initialisations |
double[] |
HigherOrderHMM.getLogProbFor(Sample data)
|
void |
HigherOrderHMM.getLogProbFor(Sample data,
double[] res)
|
protected void |
SamplingHigherOrderHMM.gibbsSamplingStep(int sampling,
int steps,
boolean append,
Sample data,
double[] weights)
This method implements the next step(s) in the sampling procedure |
void |
DifferentiableHigherOrderHMM.initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
|
protected void |
SamplingHigherOrderHMM.initTraining(Sample data,
double[] weights)
This methods initialize the training procedure with the given training data |
void |
SamplingHigherOrderHMM.train(Sample data,
double[] weights)
|
void |
HigherOrderHMM.train(Sample data,
double[] weights)
|
void |
DifferentiableHigherOrderHMM.train(Sample data,
double[] weights)
|
Uses of Sample in de.jstacs.models.mixture |
---|
Fields in de.jstacs.models.mixture declared as Sample | |
---|---|
protected Sample[] |
AbstractMixtureModel.sample
The sample that was used in the last training. |
Methods in de.jstacs.models.mixture that return Sample | |
---|---|
Sample |
AbstractMixtureModel.emitSample(int n,
int... lengths)
|
Methods in de.jstacs.models.mixture with parameters of type Sample | |
---|---|
protected double[][] |
AbstractMixtureModel.doFirstIteration(Sample data,
double[] dataWeights)
This method will do the first step in the train algorithm for the current model. |
double[][] |
MixtureModel.doFirstIteration(Sample data,
double[] dataWeights,
double[][] partitioning)
This method enables you to train a mixture model with a fixed start partitioning. |
protected double[][] |
AbstractMixtureModel.doFirstIteration(Sample data,
double[] dataWeights,
MultivariateRandomGenerator m,
MRGParams[] params)
This method will do the first step in the train algorithm for the current model. |
double[] |
AbstractMixtureModel.getLogProbFor(Sample data)
|
double |
AbstractMixtureModel.iterate(Sample data,
double[] dataWeights,
MultivariateRandomGenerator m,
MRGParams[] params)
This method runs the train algorithm for the current model. |
void |
StrandModel.setTrainData(Sample s)
|
protected void |
MixtureModel.setTrainData(Sample data)
|
protected abstract void |
AbstractMixtureModel.setTrainData(Sample data)
This method is invoked by the train -method and sets for a
given sample the sample that should be used for train . |
void |
AbstractMixtureModel.train(Sample data,
double[] dataWeights)
|
Uses of Sample in de.jstacs.models.mixture.motif |
---|
Methods in de.jstacs.models.mixture.motif with parameters of type Sample | |
---|---|
protected void |
SingleHiddenMotifMixture.setTrainData(Sample data)
|
void |
HiddenMotifMixture.train(Sample data,
double[] weights)
|
void |
SingleHiddenMotifMixture.trainBgModel(Sample data,
double[] weights)
|
abstract void |
HiddenMotifMixture.trainBgModel(Sample data,
double[] weights)
This method trains the background model. |
Uses of Sample in de.jstacs.models.utils |
---|
Methods in de.jstacs.models.utils that return Sample | |
---|---|
static Sample |
DiscreteInhomogenousSampleEmitter.emitSample(Model m,
int n)
This method emits a sample with n |
Methods in de.jstacs.models.utils with parameters of type Sample | |
---|---|
static double |
ModelTester.getLogLikelihood(Model m,
Sample data)
Returns the log-likelihood of a Sample data for a
given model m . |
static double |
ModelTester.getLogLikelihood(Model m,
Sample data,
double[] weights)
Returns the log-likelihood of a Sample data for a
given model m . |
static double |
ModelTester.getValueOfAIC(Model m,
Sample s,
int k)
This method computes the value of Akaikes Information Criterion (AIC). |
static double |
ModelTester.getValueOfBIC(Model m,
Sample s,
int k)
This method computes the value of the Bayesian Information Criterion (BIC). |
Uses of Sample in de.jstacs.motifDiscovery |
---|
Methods in de.jstacs.motifDiscovery that return Sample | |
---|---|
Sample |
SignificantMotifOccurrencesFinder.annotateMotif(int startPos,
Sample data,
int motifIndex)
This method annotates a Sample starting in each sequence at startPos . |
Sample |
SignificantMotifOccurrencesFinder.annotateMotif(int startPos,
Sample data,
int motifIndex,
int addMax,
boolean addAnnotation)
This method annotates a Sample starting in each sequence at startPos . |
Sample |
SignificantMotifOccurrencesFinder.annotateMotif(Sample data,
int motifIndex)
This method annotates a Sample . |
Sample |
SignificantMotifOccurrencesFinder.annotateMotif(Sample data,
int motifIndex,
int addMax)
This method annotates a Sample . |
Sample |
SignificantMotifOccurrencesFinder.getBindingSites(int startPos,
Sample data,
int motifIndex,
int addMax,
int addLeft,
int addRight)
This method returns a Sample containing the predicted binding sites. |
Sample |
SignificantMotifOccurrencesFinder.getBindingSites(Sample data,
int motifIndex)
This method returns a Sample containing the predicted binding sites. |
Methods in de.jstacs.motifDiscovery with parameters of type Sample | |
---|---|
void |
MutableMotifDiscoverer.adjustHiddenParameters(int index,
Sample[] data,
double[][] weights)
Adjusts all hidden parameters including duration and mixture parameters according to the current values of the remaining parameters. |
Sample |
SignificantMotifOccurrencesFinder.annotateMotif(int startPos,
Sample data,
int motifIndex)
This method annotates a Sample starting in each sequence at startPos . |
Sample |
SignificantMotifOccurrencesFinder.annotateMotif(int startPos,
Sample data,
int motifIndex,
int addMax,
boolean addAnnotation)
This method annotates a Sample starting in each sequence at startPos . |
Sample |
SignificantMotifOccurrencesFinder.annotateMotif(Sample data,
int motifIndex)
This method annotates a Sample . |
Sample |
SignificantMotifOccurrencesFinder.annotateMotif(Sample data,
int motifIndex,
int addMax)
This method annotates a Sample . |
static ListResult |
MotifDiscoveryAssessment.assess(Sample truth,
Sample prediction,
int maxDiff)
This method computes the nucleotide and site measures. |
static boolean |
MutableMotifDiscovererToolbox.doHeuristicSteps(ScoringFunction[] funs,
Sample[] data,
double[][] weights,
SFBasedOptimizableFunction opt,
DifferentiableFunction neg,
byte algorithm,
double linEps,
StartDistanceForecaster startDistance,
SafeOutputStream out,
boolean breakOnChanged,
History[][] hist,
int[][] minimalNewLength,
boolean maxPos)
This method tries to make some heuristic step if at least one MutableMotifDiscovererToolbox.InitMethodForScoringFunction is a MutableMotifDiscoverer . |
static boolean |
MutableMotifDiscovererToolbox.findModification(int clazz,
int motif,
MutableMotifDiscoverer mmd,
ScoringFunction[] score,
Sample[] data,
double[][] weights,
SFBasedOptimizableFunction opt,
DifferentiableFunction neg,
byte algo,
double linEps,
StartDistanceForecaster startDistance,
SafeOutputStream out,
History hist,
int minimalNewLength,
boolean maxPos)
This method tries to find a modification, i.e. shifting, shrinking, or expanding a motif, that is promising. |
static Sample.WeightedSampleFactory |
KMereStatistic.getAbsoluteKMereFrequencies(Sample data,
int k,
boolean bothStrands)
This method enables the user to get a statistic over all k -mers
in the data . |
static Sample.WeightedSampleFactory |
KMereStatistic.getAbsoluteKMereFrequencies(Sample data,
int k,
boolean bothStrands,
Sample.WeightedSampleFactory.SortOperation sortOp)
This method enables the user to get a statistic over all k -mers
in the data . |
Sample |
SignificantMotifOccurrencesFinder.getBindingSites(int startPos,
Sample data,
int motifIndex,
int addMax,
int addLeft,
int addRight)
This method returns a Sample containing the predicted binding sites. |
Sample |
SignificantMotifOccurrencesFinder.getBindingSites(Sample data,
int motifIndex)
This method returns a Sample containing the predicted binding sites. |
static Sequence[] |
KMereStatistic.getCommonString(Sample data,
int motifLength,
boolean bothStrands)
This method returns an array of strings of length motifLength so that each String is contained in all
sequences of the sample respectively in the sample and the reverse
complementary sample. |
static Pair<Sequence,BitSet[]>[] |
KMereStatistic.getKmereSequenceStatistic(boolean bothStrands,
int maxMismatch,
HashSet<Sequence> filter,
Sample... data)
This method enables the user to get a statistic for a set of k -mers. |
static Hashtable<Sequence,BitSet[]> |
KMereStatistic.getKmereSequenceStatistic(int k,
boolean bothStrands,
int addIndex,
Sample... data)
This method enables the user to get a statistic over all k -mers
in the sequences. |
double |
SignificantMotifOccurrencesFinder.getNumberOfBoundSequences(Sample data,
double[] weights,
int motifIndex)
Returns the number of sequences in data that are predicted to be bound at least once by motif no. |
static double[][] |
MotifDiscoveryAssessment.getSortedScoresForMotifAndFlanking(Sample data,
Sample pred,
String identifier)
Returns the scores read from the prediction pred for the motif with identifier identifier and flanking sequences as annotated in
the Sample data. |
static double[][] |
MotifDiscoveryAssessment.getSortedValuesForMotifAndFlanking(Sample data,
double[][] values,
double offset,
double factor,
String identifier)
This method provides some score arrays that can be used in ScoreBasedPerformanceMeasureDefinitions to determine some
curves or area under curves based on the values of the predictions. |
IntList |
SignificantMotifOccurrencesFinder.getStartPositions(int startPos,
Sample data,
int motifIndex,
int addMax)
This method returns a list of start positions of binding sites. |
double[][] |
SignificantMotifOccurrencesFinder.getValuesForEachNucleotide(Sample data,
int motif,
boolean addOnlyBest)
This method determines a score for each possible starting position in each of the sequences in data
that this position is covered by at least one motif occurrence of the
motif with index index . |
void |
MutableMotifDiscoverer.initializeMotif(int motifIndex,
Sample data,
double[] weights)
This method allows to initialize the model of a motif manually using a weighted sample. |
static void |
MutableMotifDiscovererToolbox.initMotif(int idx,
int[] classIndex,
int[] motifIndex,
Sample[] s,
double[][] seqWeights,
boolean[] adjust,
MutableMotifDiscoverer[] mmd,
int[] len,
Sample[] data,
double[][] dataWeights)
This method allows to initialize a number of motifs. |
static void |
MutableMotifDiscovererToolbox.initMotif(int idx,
int[] classIndex,
int[] motifIndex,
Sample[] s,
double[][] seqWeights,
boolean[] adjust,
MutableMotifDiscoverer[] mmd,
int[] len,
Sample[] data,
double[][] dataWeights)
This method allows to initialize a number of motifs. |
Constructors in de.jstacs.motifDiscovery with parameters of type Sample | |
---|---|
KMereStatistic(Sample data,
int k)
This constructor creates an internal statistic counting all k -mers in the data . |
|
SignificantMotifOccurrencesFinder(MotifDiscoverer disc,
Sample bg,
double[] weights,
double sign)
This constructor creates an instance of SignificantMotifOccurrencesFinder that uses a Sample to determine the siginificance level. |
|
SignificantMotifOccurrencesFinder(MotifDiscoverer disc,
SignificantMotifOccurrencesFinder.JoinMethod joiner,
Sample bg,
double[] weights,
double sign)
This constructor creates an instance of SignificantMotifOccurrencesFinder that uses a Sample to determine the siginificance level. |
Uses of Sample in de.jstacs.results |
---|
Methods in de.jstacs.results that return Sample | |
---|---|
Sample |
SampleResult.getResult()
|
Constructors in de.jstacs.results with parameters of type Sample | |
---|---|
SampleResult(String name,
String comment,
Sample data)
Creates a new SampleResult from a Sample with the
annotation name and comment . |
|
SampleResult(String name,
String comment,
Sample data,
SequenceAnnotationParser parser)
Creates a new SampleResult from a Sample with the
annotation name and comment . |
Uses of Sample in de.jstacs.sampling |
---|
Methods in de.jstacs.sampling with parameters of type Sample | |
---|---|
void |
GibbsSamplingModel.drawParameters(Sample data,
double[] weights)
This method draws the parameters of the model from the a posteriori density. |
Uses of Sample in de.jstacs.scoringFunctions |
---|
Methods in de.jstacs.scoringFunctions with parameters of type Sample | |
---|---|
void |
MappingScoringFunction.adjustHiddenParameters(int index,
Sample[] data,
double[][] weights)
|
void |
IndependentProductScoringFunction.adjustHiddenParameters(int index,
Sample[] data,
double[][] weights)
|
int |
IndependentProductScoringFunction.extractSequenceParts(int scoringFunctionIndex,
Sample[] data,
Sample[] result)
This method extracts the corresponding Sequence parts for a specific ScoringFunction . |
int |
IndependentProductScoringFunction.extractSequenceParts(int scoringFunctionIndex,
Sample[] data,
Sample[] result)
This method extracts the corresponding Sequence parts for a specific ScoringFunction . |
void |
UniformScoringFunction.initializeFunction(int index,
boolean meila,
Sample[] data,
double[][] weights)
|
void |
ScoringFunction.initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
This method creates the underlying structure of the ScoringFunction . |
void |
NormalizedScoringFunction.initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
|
void |
MRFScoringFunction.initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
|
void |
MappingScoringFunction.initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
|
void |
IndependentProductScoringFunction.initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
|
void |
CMMScoringFunction.initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
|
void |
MappingScoringFunction.initializeMotif(int motifIndex,
Sample data,
double[] weights)
|
void |
IndependentProductScoringFunction.initializeMotif(int motifIndex,
Sample data,
double[] weights)
|
Uses of Sample in de.jstacs.scoringFunctions.directedGraphicalModels |
---|
Methods in de.jstacs.scoringFunctions.directedGraphicalModels with parameters of type Sample | |
---|---|
protected void |
BayesianNetworkScoringFunction.createTrees(Sample[] data2,
double[][] weights2)
Creates the tree structures that represent the context (array BayesianNetworkScoringFunction.trees ) and the parameter objects BayesianNetworkScoringFunction.parameters using the
given Measure BayesianNetworkScoringFunction.structureMeasure . |
void |
BayesianNetworkScoringFunction.initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
|
protected void |
BayesianNetworkScoringFunction.setPlugInParameters(int index,
boolean freeParameters,
Sample[] data,
double[][] weights)
Computes and sets the plug-in parameters (MAP estimated parameters) from data using weights . |
Uses of Sample in de.jstacs.scoringFunctions.directedGraphicalModels.structureLearning.measures |
---|
Methods in de.jstacs.scoringFunctions.directedGraphicalModels.structureLearning.measures with parameters of type Sample | |
---|---|
abstract int[][] |
Measure.getParents(Sample fg,
Sample bg,
double[] weightsFg,
double[] weightsBg,
int length)
Returns the optimal parents for the given data and weights. |
int[][] |
InhomogeneousMarkov.getParents(Sample fg,
Sample bg,
double[] weightsFg,
double[] weightsBg,
int length)
|
protected static double[][][][] |
Measure.getStatistics(Sample s,
double[] weights,
int length,
double ess)
Counts the occurrences of symbols of the AlphabetContainer of
Sample s using weights . |
protected static double[][][][][][] |
Measure.getStatisticsOrderTwo(Sample s,
double[] weights,
int length,
double ess)
Counts the occurrences of symbols of the AlphabetContainer of
Sample s using weights . |
Uses of Sample in de.jstacs.scoringFunctions.directedGraphicalModels.structureLearning.measures.btMeasures |
---|
Methods in de.jstacs.scoringFunctions.directedGraphicalModels.structureLearning.measures.btMeasures with parameters of type Sample | |
---|---|
int[][] |
BTMutualInformation.getParents(Sample fg,
Sample bg,
double[] weightsFg,
double[] weightsBg,
int length)
|
int[][] |
BTExplainingAwayResidual.getParents(Sample fg,
Sample bg,
double[] weightsFg,
double[] weightsBg,
int length)
|
Uses of Sample in de.jstacs.scoringFunctions.directedGraphicalModels.structureLearning.measures.pmmMeasures |
---|
Methods in de.jstacs.scoringFunctions.directedGraphicalModels.structureLearning.measures.pmmMeasures with parameters of type Sample | |
---|---|
int[][] |
PMMMutualInformation.getParents(Sample fg,
Sample bg,
double[] weightsFg,
double[] weightsBg,
int length)
|
int[][] |
PMMExplainingAwayResidual.getParents(Sample fg,
Sample bg,
double[] weightsFg,
double[] weightsBg,
int length)
|
Uses of Sample in de.jstacs.scoringFunctions.homogeneous |
---|
Methods in de.jstacs.scoringFunctions.homogeneous that return Sample | |
---|---|
Sample |
HMMScoringFunction.emit(int numberOfSequences,
int... seqLength)
This method returns a Sample object containing artificial
sequence(s). |
Methods in de.jstacs.scoringFunctions.homogeneous with parameters of type Sample | |
---|---|
void |
UniformHomogeneousScoringFunction.initializeFunction(int index,
boolean meila,
Sample[] data,
double[][] weights)
|
void |
HMMScoringFunction.initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
|
void |
HMM0ScoringFunction.initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
|
Uses of Sample in de.jstacs.scoringFunctions.mix |
---|
Methods in de.jstacs.scoringFunctions.mix with parameters of type Sample | |
---|---|
void |
MixtureScoringFunction.adjustHiddenParameters(int index,
Sample[] data,
double[][] weights)
Adjusts all hidden parameters including duration and mixture parameters according to the current values of the remaining parameters. |
void |
AbstractMixtureScoringFunction.initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
|
void |
MixtureScoringFunction.initializeMotif(int motifIndex,
Sample data,
double[] weights)
|
protected void |
StrandScoringFunction.initializeUsingPlugIn(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
|
protected void |
MixtureScoringFunction.initializeUsingPlugIn(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
|
protected abstract void |
AbstractMixtureScoringFunction.initializeUsingPlugIn(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
This method initializes the functions using the data in some way. |
Uses of Sample in de.jstacs.scoringFunctions.mix.motifSearch |
---|
Methods in de.jstacs.scoringFunctions.mix.motifSearch with parameters of type Sample | |
---|---|
void |
HiddenMotifsMixture.adjustHiddenParameters(int classIndex,
Sample[] data,
double[][] dataWeights)
|
void |
UniformDurationScoringFunction.initializeFunction(int index,
boolean meila,
Sample[] data,
double[][] weights)
|
void |
SkewNormalLikeScoringFunction.initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
|
void |
MixtureDuration.initializeFunction(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
|
void |
HiddenMotifsMixture.initializeMotif(int motif,
Sample data,
double[] weights)
|
protected void |
HiddenMotifsMixture.initializeUsingPlugIn(int index,
boolean freeParams,
Sample[] data,
double[][] weights)
|
|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |