Package | Description |
---|---|
de.jstacs.algorithms.optimization.termination |
Provides classes for termination conditions that can be used in algorithms.
|
de.jstacs.classifiers.assessment |
This package allows to assess classifiers.
It contains the class ClassifierAssessment that
is used as a super-class of all implemented methodologies of
an assessment to assess classifiers. |
de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix |
Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModel s by
a unified generative-discriminative learning principle. |
de.jstacs.classifiers.differentiableSequenceScoreBased.sampling |
Provides the classes for
AbstractScoreBasedClassifier s that are based on
SamplingDifferentiableStatisticalModel s
and that sample parameters using the Metropolis-Hastings algorithm. |
de.jstacs.classifiers.performanceMeasures |
This package provides the implementations of performance measures that can be used to assess any classifier.
|
de.jstacs.parameters |
This package provides classes for parameters that establish a general convention for the description of parameters
as defined in the
Parameter -interface. |
de.jstacs.results |
This package provides classes for results and sets of results.
|
de.jstacs.sampling |
This package contains many classes that can be used while a sampling.
|
de.jstacs.sequenceScores.statisticalModels.differentiable.directedGraphicalModels.structureLearning.measures |
Provides the facilities to learn the structure of a
BayesianNetworkDiffSM . |
de.jstacs.sequenceScores.statisticalModels.trainable.discrete | |
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters | |
de.jstacs.sequenceScores.statisticalModels.trainable.hmm.training |
The package provides all classes used to determine the training algorithm of a hidden Markov model.
|
de.jstacs.tools | |
de.jstacs.tools.ui.galaxy |
Constructor and Description |
---|
AbsoluteValueConditionParameterSet(double absValue)
This constructor creates a filled instance of a parameters set.
|
IterationConditionParameterSet(int maxIter)
This constructor creates a filled instance of a parameters set.
|
SmallGradientConditonParameterSet(double eps)
This constructor creates a filled instance of a parameters set.
|
SmallStepConditionParameterSet(double eps)
This constructor creates a filled instance of a parameters set.
|
TimeConditionParameterSet(double seconds)
This constructor creates a filled instance of a parameters set.
|
Modifier and Type | Method and Description |
---|---|
protected SimpleParameterSet |
RepeatedHoldOutAssessParameterSet.getParameterSetContainingASingleDoubleValue(double percent)
|
void |
ClassifierAssessmentAssessParameterSet.setStoreAll(boolean b)
This method allows to set the switch for storing all individual performance measure values of each iteration of the
ClassifierAssessment . |
protected void |
ClassifierAssessment.test(NumericalPerformanceMeasureParameterSet mp,
boolean exception,
DataSet[] testS,
double[][] weights)
Uses the given test data sets to call the evaluate( ...
|
Constructor and Description |
---|
ClassifierAssessmentAssessParameterSet(int elementLength,
boolean exceptionIfMPNotComputable)
Constructs a new
ClassifierAssessmentAssessParameterSet with
given parameter values. |
RepeatedSubSamplingAssessParameterSet()
Constructs a new
RepeatedSubSamplingAssessParameterSet with empty
parameter values. |
RepeatedSubSamplingAssessParameterSet(int elementLength,
boolean exceptionIfMPNotComputable,
int repeats,
double[] trainNumbers,
double[] testNumbers)
Constructs a new
RepeatedSubSamplingAssessParameterSet with given
parameter values. |
Modifier and Type | Method and Description |
---|---|
void |
GenDisMixClassifierParameterSet.setNumberOfThreads(int threads)
This method set the number of threads used during optimization.
|
void |
GenDisMixClassifier.setNumberOfThreads(int threads)
This method allows to set the number of threads used while optimization.
|
Modifier and Type | Method and Description |
---|---|
void |
SamplingScoreBasedClassifierParameterSet.setNumberOfStarts(int i)
Sets the number of starts to
i |
Modifier and Type | Method and Description |
---|---|
protected void |
AbstractPerformanceMeasureParameterSet.setMeasure(T measure)
Sets the given measure as content of the internally last
ParameterSetContainer . |
Modifier and Type | Method and Description |
---|---|
protected void |
AbstractSelectionParameter.createParameterSet(Object[] values,
String[] keys,
String[] comments)
Creates a new
ParameterSet from an array of values, an array of
names and an array of comments. |
void |
ParameterSetTagger.fillParameters(String delimiter,
String... args) |
boolean |
RangeParameter.next()
Returns
true if the next element still exists and can be
fetched using RangeParameter.getValue() , false otherwise. |
void |
SimpleParameter.setDefault(Object defaultValue) |
void |
SelectionParameter.setDefault(Object defaultValue) |
void |
MultiSelectionParameter.setDefault(Object defaultValue) |
void |
FileParameter.setDefault(Object defaultValue) |
void |
EnumParameter.setDefault(Object defaultValue) |
void |
ArrayParameterSet.setLength(int length) |
void |
SimpleParameter.setValue(Object value2) |
void |
SelectionParameter.setValue(Object value)
Sets the selected value to the one that is specified by the key
value . |
void |
RangeParameter.setValue(Object value) |
void |
ParameterSetContainer.setValue(Object value) |
abstract void |
Parameter.setValue(Object value)
Sets the value of this
Parameter to value . |
void |
MultiSelectionParameter.setValue(Object value) |
void |
FileParameter.setValue(Object value) |
void |
EnumParameter.setValue(Object value) |
void |
ParameterSetTagger.setValueFromTag(String tag,
Object value)
This method allows to easily set the value of a parameter defined by the tag.
|
void |
RangeParameter.setValues(Object startValue,
int steps,
Object endValue,
RangeParameter.Scale scale)
Sets the values of this
RangeParameter as a range of values,
specified by a start value, a last value, a number of steps between these
values (without the last value) and a scale in that the values between
the first and the last value are chosen. |
void |
RangeParameter.setValues(String values)
Sets a list of values from a
String containing a space separated
list of values. |
void |
RangeParameter.setValuesInLogScale(boolean log,
double radix,
Object startValue,
int steps,
Object endValue)
This method enables you to set a list of values in an easy manner.
|
Constructor and Description |
---|
AbstractSelectionParameter(DataType datatype,
String[] keys,
Object[] values,
String[] comments,
String name,
String comment,
boolean required)
Constructor for a
AbstractSelectionParameter . |
AbstractSelectionParameter(DataType datatype,
String[] keys,
Object[] values,
String name,
String comment,
boolean required)
Constructor for a
AbstractSelectionParameter of SimpleParameter s. |
ArrayParameterSet(ParameterSet template,
String nameTemplate,
String commentTemplate)
Creates a new
ArrayParameterSet from a Class that can be
instantiated using this ArrayParameterSet and templates for the
ParameterSet in each element of the array, the name and the
comment that are displayed for the ParameterSetContainer s
enclosing the ParameterSet s. |
ArrayParameterSet(ParameterSet template,
String nameTemplate,
String commentTemplate,
String lengthName,
String lengthComment,
NumberValidator<Integer> allowedLengths)
Creates a new
ArrayParameterSet from a Class that can be
instantiated using this ArrayParameterSet and templates for the
ParameterSet in each element of the array, the name and the
comment that are displayed for the ParameterSetContainer s
enclosing the ParameterSet s. |
MultiSelectionParameter(DataType datatype,
String[] keys,
Object[] values,
String[] comments,
String name,
String comment,
boolean required)
Constructor for a
MultiSelectionParameter . |
MultiSelectionParameter(DataType datatype,
String[] keys,
Object[] values,
String name,
String comment,
boolean required)
Constructor for a
MultiSelectionParameter . |
SelectionParameter(DataType datatype,
String[] keys,
Object[] values,
String[] comments,
String name,
String comment,
boolean required)
Constructor for a
SelectionParameter . |
SelectionParameter(DataType datatype,
String[] keys,
Object[] values,
String name,
String comment,
boolean required)
Constructor for a
SelectionParameter . |
SimpleParameter(DataType datatype,
String name,
String comment,
boolean required,
Object defaultVal)
Constructor for a
SimpleParameter without
ParameterValidator but with a default value. |
Modifier and Type | Method and Description |
---|---|
void |
MeanResultSet.addResults(NumericalResultSet... rs)
Adds
NumericalResultSet s to this MeanResultSet . |
static Result |
Result.createResult(String name,
String comment,
DataType datatype,
Object value)
Factory method to create a new
Result . |
void |
TextResult.fill(FileParameter par)
Fills the supplied
FileParameter with a clone of the contents of this TextResult . |
Constructor and Description |
---|
CategoricalResult(DataType datatype,
String name,
String comment,
Comparable result)
Creates a result of a primitive categorical data type or a
String
. |
Constructor and Description |
---|
AbstractBurnInTestParameterSet(Class<? extends AbstractBurnInTest> instanceClass,
int starts)
Creates a new
AbstractBurnInTestParameterSet with
pre-defined parameter values. |
VarianceRatioBurnInTestParameterSet(int starts,
double t)
Creates a new
VarianceRatioBurnInTestParameterSet with
pre-defined parameter values. |
Constructor and Description |
---|
InhomogeneousMarkov(int order)
Creates the structure of an inhomogeneous Markov model of order
order . |
InhomogeneousMarkovParameterSet(int order)
Creates a new
InhomogeneousMarkov.InhomogeneousMarkovParameterSet with the
parameter for the order set to order . |
Modifier and Type | Method and Description |
---|---|
void |
DGTrainSMParameterSet.setEss(double ess)
This method can be used to set the ess (equivalent sample
size) of this parameter set.
|
Modifier and Type | Method and Description |
---|---|
void |
BayesianNetworkTrainSMParameterSet.setModelType(String modelType)
This method allows a simple change of the model type.
|
Constructor and Description |
---|
HMMTrainingParameterSet(int starts)
This constructor can be used to create an instance with a specified number of starts.
|
SamplingHMMTrainingParameterSet(int starts,
int stepsPerIteration,
int stationarySteps,
AbstractBurnInTestParameterSet burnInTestParameters)
This is the main constructor creating an already filled parameter set for training an
AbstractHMM using a sampling strategy. |
Constructor and Description |
---|
DataColumnParameter(String dataRef,
String name,
String comment,
boolean required,
Integer defaultVal)
Creates a new
DataColumnParameter with given name, comment, and reference. |
Constructor and Description |
---|
MultilineSimpleParameter(String name,
String comment,
boolean required,
Object defaultVal)
Creates a new
MultilineSimpleParameter with given default value. |