Package | Description |
---|---|
de.jstacs.classifiers.assessment |
This package allows to assess classifiers.
It contains the class ClassifierAssessment that
is used as a super-class of all implemented methodologies of
an assessment to assess classifiers. |
de.jstacs.clustering.distances | |
de.jstacs.data |
Provides classes for the representation of data.
The base classes to represent data are Alphabet and AlphabetContainer for representing alphabets,
Sequence and its sub-classes to represent continuous and discrete sequences, and
DataSet to represent data sets comprising a set of sequences. |
de.jstacs.data.alphabets |
Provides classes for the representation of discrete and continuous alphabets, including a
DNAAlphabet for the most common case of DNA-sequences. |
de.jstacs.data.bioJava |
Provides an adapter between the representation of data in BioJava and the representation used in Jstacs.
|
de.jstacs.data.sequences |
Provides classes for representing sequences.
The implementations of sequences currently include DiscreteSequence s prepared for alphabets of different sizes, and ArbitrarySequence s that may
contain continuous values as well.As sub-package provides the facilities to annotate Sequence s. |
de.jstacs.io |
Provides classes for reading data from and writing to a file and storing a number of datatypes, including all primitives, arrays of primitives, and
Storable s to an XML-representation. |
de.jstacs.motifDiscovery |
This package provides the framework including the interface for any de novo motif discoverer.
|
de.jstacs.sequenceScores.differentiable | |
de.jstacs.sequenceScores.statisticalModels.differentiable |
Provides all
DifferentiableStatisticalModel s, which can compute the gradient with
respect to their parameters for a given input Sequence . |
de.jstacs.sequenceScores.statisticalModels.differentiable.mixture |
Provides
DifferentiableSequenceScore s that are mixtures of other DifferentiableSequenceScore s. |
de.jstacs.sequenceScores.statisticalModels.differentiable.mixture.motif | |
de.jstacs.sequenceScores.statisticalModels.trainable |
Provides all
TrainableStatisticalModel s, which can
be learned from a single DataSet . |
de.jstacs.sequenceScores.statisticalModels.trainable.discrete | |
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.homogeneous | |
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous |
This package contains various inhomogeneous models.
|
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared | |
de.jstacs.sequenceScores.statisticalModels.trainable.hmm |
The package provides all interfaces and classes for a hidden Markov model (HMM).
|
de.jstacs.sequenceScores.statisticalModels.trainable.hmm.models |
The package provides different implementations of hidden Markov models based on
AbstractHMM . |
de.jstacs.sequenceScores.statisticalModels.trainable.mixture |
This package is the super package for any mixture model.
|
de.jstacs.sequenceScores.statisticalModels.trainable.mixture.motif |
Modifier and Type | Method and Description |
---|---|
ListResult |
ClassifierAssessment.assess(NumericalPerformanceMeasureParameterSet mp,
T assessPS,
DataSet... s)
Assesses the contained classifiers.
|
ListResult |
ClassifierAssessment.assess(NumericalPerformanceMeasureParameterSet mp,
T assessPS,
ProgressUpdater pU,
DataSet[] s)
Assesses the contained classifiers.
|
ListResult |
ClassifierAssessment.assess(NumericalPerformanceMeasureParameterSet mp,
T assessPS,
ProgressUpdater pU,
DataSet[][]... s)
Assesses the contained classifiers.
|
ListResult |
ClassifierAssessment.assess(NumericalPerformanceMeasureParameterSet mp,
T assessPS,
ProgressUpdater pU,
DataSet[] s,
double[][] weights)
Assesses the contained classifiers.
|
protected void |
ClassifierAssessment.prepareAssessment(boolean storeAll,
DataSet... s)
Prepares an assessment.
|
Constructor and Description |
---|
ClassifierAssessment(AbstractClassifier... aCs)
Creates a new
ClassifierAssessment from a set of
AbstractClassifier s. |
ClassifierAssessment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given
AbstractClassifier s and, in addition, classifiers that will be
constructed using the given TrainableStatisticalModel s. |
ClassifierAssessment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new
ClassifierAssessment from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
ClassifierAssessment(boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
Creates a new
ClassifierAssessment from a set of TrainableStatisticalModel s. |
KFoldCrossValidation(AbstractClassifier... aCs)
Creates a new
KFoldCrossValidation from a set of
AbstractClassifier s. |
KFoldCrossValidation(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given
AbstractClassifier s and those constructed using the given
TrainableStatisticalModel s by a KFoldCrossValidation
. |
KFoldCrossValidation(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new
KFoldCrossValidation from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
KFoldCrossValidation(boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
Creates a new
KFoldCrossValidation from a set of TrainableStatisticalModel s. |
RepeatedHoldOutExperiment(AbstractClassifier... aCs)
Creates a new
RepeatedHoldOutExperiment from a set of
AbstractClassifier s. |
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given
AbstractClassifier s and those constructed using the given
TrainableStatisticalModel s by a
RepeatedHoldOutExperiment . |
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new
RepeatedHoldOutExperiment from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
RepeatedHoldOutExperiment(boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
Creates a new
RepeatedHoldOutExperiment from a set of
TrainableStatisticalModel s. |
RepeatedSubSamplingExperiment(AbstractClassifier... aCs)
Creates a new
RepeatedSubSamplingExperiment from a set of
AbstractClassifier s. |
RepeatedSubSamplingExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given
AbstractClassifier s and those constructed using the given
TrainableStatisticalModel s by a
RepeatedSubSamplingExperiment . |
RepeatedSubSamplingExperiment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new
RepeatedSubSamplingExperiment from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
RepeatedSubSamplingExperiment(boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
Creates a new
RepeatedSubSamplingExperiment from a set of
TrainableStatisticalModel s. |
Sampled_RepeatedHoldOutExperiment(AbstractClassifier... aCs)
Creates a new
Sampled_RepeatedHoldOutExperiment from a set of
AbstractClassifier s. |
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given
AbstractClassifier s and those constructed using the given
TrainableStatisticalModel s by a
Sampled_RepeatedHoldOutExperiment . |
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new
Sampled_RepeatedHoldOutExperiment from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
Sampled_RepeatedHoldOutExperiment(boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
Creates a new
Sampled_RepeatedHoldOutExperiment from a set of
TrainableStatisticalModel s. |
Modifier and Type | Method and Description |
---|---|
static CyclicSequenceAdaptor[] |
RandomSequenceScoreDistance.createSequences(DiscreteAlphabet alphabet,
int n)
Creates a new random sequence of the given length and alphabet.
|
Constructor and Description |
---|
RandomSequenceScoreDistance(DiscreteAlphabet alphabet,
int n,
boolean exp)
Creates a distance using a random sequence of length
![]() |
SequenceScoreDistance(DiscreteAlphabet alphabet,
int n,
boolean exp)
Creates a new distance.
|
Modifier and Type | Method and Description |
---|---|
static DataSet |
DataSet.diff(DataSet data,
DataSet... samples)
|
static CyclicSequenceAdaptor[] |
DeBruijnSequenceGenerator.generate(DiscreteAlphabet alphabet,
int n)
Generates a De Bruijn sequence of length
![]() |
static CyclicSequenceAdaptor[] |
DeBruijnGraphSequenceGenerator.generate(DiscreteAlphabet alphabet,
int n)
Generates a De Bruijn sequence of length
![]() |
static CyclicSequenceAdaptor |
DeBruijnSequenceGenerator.generate(DiscreteAlphabet alphabet,
int n,
int alphabetShift)
Generates a De Bruijn sequence using the supplied alphabet and the given alphabet shift, i.e., for a cyclic shift of the symbols
of the alphabet.
|
static CyclicSequenceAdaptor |
DeBruijnGraphSequenceGenerator.generate(DiscreteAlphabet alphabet,
int n,
int alphabetShift)
Generates a De Bruijn sequence using the supplied alphabet and the given alphabet shift, i.e., for a cyclic shift of the symbols
of the alphabet.
|
double |
AlphabetContainer.getCode(int pos,
String sym)
|
ArbitrarySequence |
DinucleotideProperty.getPropertyAsSequence(Sequence original)
Computes this dinucleotide property for all overlapping dimers in
original
and returns the result as a Sequence of length original.getLength()-1 |
Constructor and Description |
---|
DataSet(AlphabetContainer abc,
AbstractStringExtractor se)
|
DataSet(AlphabetContainer abc,
AbstractStringExtractor se,
int subsequenceLength)
Creates a new
DataSet from a StringExtractor
using the given AlphabetContainer and all overlapping windows of
length subsequenceLength . |
DataSet(AlphabetContainer abc,
AbstractStringExtractor se,
String delim)
Creates a new
DataSet from a StringExtractor
using the given AlphabetContainer and a delimiter
delim . |
DataSet(AlphabetContainer abc,
AbstractStringExtractor se,
String delim,
int subsequenceLength)
Creates a new
DataSet from a StringExtractor
using the given AlphabetContainer , the given delimiter
delim and all overlapping windows of length
subsequenceLength . |
DataSet(AlphabetContainer abc,
AbstractStringExtractor se,
String delim,
int subsequenceLength,
double percentage)
Creates a new
DataSet from a StringExtractor
using the given AlphabetContainer , the given delimiter
delim and all overlapping windows of length
subsequenceLength . |
DataSet(String annotation,
Collection<Sequence> seqs)
|
DataSet(String annotation,
Sequence... seqs)
Creates a new
DataSet from an array of Sequence s and a
given annotation.This constructor is specially designed for the method StatisticalModel.emitDataSet(int, int...) |
DNADataSet(String fName)
Creates a new data set of DNA sequence from a FASTA file with file name
fName . |
DNADataSet(String fName,
char ignore)
Creates a new data set of DNA sequence from a file with file name
fName . |
DNADataSet(String fName,
char ignore,
SequenceAnnotationParser parser)
Creates a new data set of DNA sequence from a file with file name
fName using the given parser . |
WeightedDataSetFactory(DataSet.WeightedDataSetFactory.SortOperation sort,
DataSet... data)
Creates a new
DataSet.WeightedDataSetFactory on the given
DataSet (s) with DataSet.WeightedDataSetFactory.SortOperation sort . |
WeightedDataSetFactory(DataSet.WeightedDataSetFactory.SortOperation sort,
DataSet[] data,
double[][] weights,
int length)
Creates a new
DataSet.WeightedDataSetFactory on the given array of
DataSet s and an array of weights with a given
length and DataSet.WeightedDataSetFactory.SortOperation sort . |
WeightedDataSetFactory(DataSet.WeightedDataSetFactory.SortOperation sort,
DataSet data,
double[] weights)
Creates a new
DataSet.WeightedDataSetFactory on the given
DataSet and an array of weights with
DataSet.WeightedDataSetFactory.SortOperation sort . |
WeightedDataSetFactory(DataSet.WeightedDataSetFactory.SortOperation sort,
DataSet data,
double[] weights,
int length)
Creates a new
DataSet.WeightedDataSetFactory on the given
DataSet and an array of weights with a given
length and DataSet.WeightedDataSetFactory.SortOperation sort . |
Modifier and Type | Method and Description |
---|---|
int |
DNAAlphabet.getCode(String symbol) |
int |
DiscreteAlphabet.getCode(String symbol)
Returns the code of a given symbol.
|
boolean |
IUPACDNAAlphabet.isPart(String query,
String code)
Indicates if
query is contained in code
according to the IUPAC DNA alphabet. |
Modifier and Type | Method and Description |
---|---|
static SequenceIterator |
BioJavaAdapter.dataSetToSequenceIterator(DataSet sample,
boolean flat,
boolean alwaysUseDNAAlphabet)
|
Modifier and Type | Method and Description |
---|---|
static Sequence |
Sequence.create(AlphabetContainer con,
SequenceAnnotation[] annotation,
String sequence,
String delim)
Creates a
Sequence from a String based on the given
AlphabetContainer using the given delimiter delim
and some annotation for the Sequence . |
static Sequence |
Sequence.create(AlphabetContainer con,
String sequence)
Creates a
Sequence from a String based on the given
AlphabetContainer using the standard delimiter for this
AlphabetContainer . |
static Sequence |
Sequence.create(AlphabetContainer con,
String sequence,
String delim)
Creates a
Sequence from a String based on the given
AlphabetContainer using the given delimiter delim . |
static DataSet |
SparseSequence.getDataSet(AlphabetContainer con,
AbstractStringExtractor... se)
This method allows to create a
DataSet containing SparseSequence s. |
static DataSet |
ArbitraryFloatSequence.getDataSet(AlphabetContainer con,
AbstractStringExtractor... se)
This method allows to create a
DataSet containing ArbitraryFloatSequence s. |
static DataSet |
SparseSequence.getDataSet(AlphabetContainer con,
String filename)
This method allows to create a
DataSet containing SparseSequence s using
a file name. |
static DataSet |
ArbitraryFloatSequence.getDataSet(AlphabetContainer con,
String filename)
This method allows to create a
DataSet containing ArbitraryFloatSequence s using
a file name. |
static DataSet |
SparseSequence.getDataSet(AlphabetContainer con,
String filename,
SequenceAnnotationParser parser)
This method allows to create a
DataSet containing SparseSequence s using
a file name. |
static DataSet |
ArbitraryFloatSequence.getDataSet(AlphabetContainer con,
String filename,
SequenceAnnotationParser parser)
This method allows to create a
DataSet containing ArbitraryFloatSequence s using
a file name. |
int |
Sequence.getHammingDistance(Sequence seq)
This method returns the Hamming distance between the current
Sequence and seq . |
protected abstract MultiDimensionalSequence<T> |
MultiDimensionalSequence.getInstance(SequenceAnnotation[] seqAn,
Sequence... seqs)
Returns a new instance of a
MultiDimensionalSequence with given SequenceAnnotation s and given Sequence s. |
protected MultiDimensionalDiscreteSequence |
MultiDimensionalDiscreteSequence.getInstance(SequenceAnnotation[] seqAn,
Sequence... seqs) |
protected MultiDimensionalArbitrarySequence |
MultiDimensionalArbitrarySequence.getInstance(SequenceAnnotation[] seqAn,
Sequence... seqs) |
boolean |
Sequence.matches(int maxHammingDistance,
Sequence shortSequence)
This method allows to answer the question whether there is a
similar pattern find a match with a given maximal number of mismatches.
|
Constructor and Description |
---|
ArbitraryFloatSequence(AlphabetContainer alphabetContainer,
float[] content)
Creates a new
ArbitraryFloatSequence from an array of
float -encoded alphabet symbols. |
ArbitraryFloatSequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
String sequence,
String delim)
|
ArbitraryFloatSequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
SymbolExtractor extractor)
Creates a new
ArbitraryFloatSequence from a SymbolExtractor . |
ArbitraryFloatSequence(AlphabetContainer alphabetContainer,
String sequence)
Creates a new
ArbitraryFloatSequence from a String
representation using the default delimiter. |
ArbitrarySequence(AlphabetContainer alphabetContainer,
double... content)
Creates a new
ArbitrarySequence from an array of
double -encoded alphabet symbols. |
ArbitrarySequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
String sequence,
String delim)
|
ArbitrarySequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
SymbolExtractor extractor)
Creates a new
ArbitrarySequence from a SymbolExtractor . |
ArbitrarySequence(AlphabetContainer alphabetContainer,
String sequence)
Creates a new
ArbitrarySequence from a String
representation using the default delimiter. |
ByteSequence(AlphabetContainer alphabetContainer,
byte[] content)
Creates a new
ByteSequence from an array of byte -
encoded alphabet symbols. |
ByteSequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
String sequence,
String delim)
|
ByteSequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
SymbolExtractor extractor)
Creates a new
ByteSequence from a SymbolExtractor . |
ByteSequence(AlphabetContainer alphabetContainer,
String sequence)
Creates a new
ByteSequence from a String representation
using the default delimiter. |
IntSequence(AlphabetContainer alphabetContainer,
int... content)
Creates a new
IntSequence from an array of int -
encoded alphabet symbols. |
IntSequence(AlphabetContainer alphabetContainer,
int[] content,
int start,
int length)
Creates a new
IntSequence from a part of the array of
int - encoded alphabet symbols. |
IntSequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
String sequence,
String delim)
|
IntSequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
SymbolExtractor extractor)
Creates a new
IntSequence from a SymbolExtractor . |
IntSequence(AlphabetContainer alphabetContainer,
String sequence)
Creates a new
IntSequence from a String representation
using the default delimiter. |
MappedDiscreteSequence(AlphabetContainer originalAlphabetContainer,
SequenceAnnotation[] seqAn,
DiscreteAlphabetMapping... transformation)
This method allows to create an empty
MappedDiscreteSequence . |
MappedDiscreteSequence(SimpleDiscreteSequence original,
DiscreteAlphabetMapping... transformation)
This method allows to create a
MappedDiscreteSequence from a given Sequence and some given DiscreteAlphabetMapping s. |
MultiDimensionalArbitrarySequence(SequenceAnnotation[] seqAn,
ArbitrarySequence... sequence)
This constructor creates an
MultiDimensionalDiscreteSequence from a set of individual Sequence s. |
MultiDimensionalDiscreteSequence(SequenceAnnotation[] seqAn,
SimpleDiscreteSequence... sequence)
This constructor creates an
MultiDimensionalDiscreteSequence from a set of individual Sequence s. |
MultiDimensionalSequence(SequenceAnnotation[] seqAn,
Sequence... sequence)
This constructor creates an
MultiDimensionalSequence from a set of individual Sequence s. |
PermutedSequence(Sequence<T> seq)
Creates a new
PermutedSequence by shuffling the symbols of a
given Sequence . |
PermutedSequence(Sequence<T> seq,
int[] permutation)
Creates a new
PermutedSequence for a given permutation |
ShortSequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
String sequence,
String delim)
|
ShortSequence(AlphabetContainer alphabetContainer,
SequenceAnnotation[] annotation,
SymbolExtractor extractor)
Creates a new
ShortSequence from a SymbolExtractor . |
ShortSequence(AlphabetContainer alphabetContainer,
short[] content)
Creates a new
ShortSequence from an array of short -
encoded alphabet symbols. |
ShortSequence(AlphabetContainer alphabetContainer,
String sequence)
Creates a new
ShortSequence from a String representation
using the default delimiter. |
SimpleDiscreteSequence(AlphabetContainer container,
SequenceAnnotation[] annotation)
This constructor creates a new
SimpleDiscreteSequence with the
AlphabetContainer container and the annotation
annotation but without the content. |
SparseSequence(AlphabetContainer alphCon,
String seq)
Creates a new
SparseSequence from a String
representation. |
SparseSequence(AlphabetContainer alphCon,
SymbolExtractor se)
Creates a new
SparseSequence from a SymbolExtractor . |
Modifier and Type | Method and Description |
---|---|
static Sequence[] |
XMLParser.extractSequencesWithTags(StringBuffer xml,
String tag)
Extracts a set of sequences from their XML representation.
|
Modifier and Type | Method and Description |
---|---|
static Pair<Sequence,BitSet[]>[] |
KMereStatistic.getKmereSequenceStatistic(boolean bothStrands,
int maxMismatch,
HashSet<Sequence> filter,
DataSet... data)
This method enables the user to get a statistic for a set of
k -mers. |
static Hashtable<Sequence,BitSet[]> |
KMereStatistic.getKmereSequenceStatistic(int k,
boolean bothStrands,
int addIndex,
DataSet... data)
This method enables the user to get a statistic over all
k -mers
in the sequences. |
static Hashtable<Sequence,BitSet[]> |
KMereStatistic.merge(Hashtable<Sequence,BitSet[]> statistic,
int maximalMissmatch,
boolean bothStrands)
This method allows to merge the statistics of k-mers by allowing mismatches.
|
Constructor and Description |
---|
IndependentProductDiffSS(boolean plugIn,
DifferentiableSequenceScore... functions)
This constructor creates an instance of an
IndependentProductDiffSS from a given series of
independent DifferentiableSequenceScore s. |
IndependentProductDiffSS(boolean plugIn,
DifferentiableSequenceScore[] functions,
int[] length)
This constructor creates an instance of an
IndependentProductDiffSS from given series of
independent DifferentiableSequenceScore s and lengths. |
IndependentProductDiffSS(boolean plugIn,
DifferentiableSequenceScore[] functions,
int[] index,
int[] length,
boolean[] reverse)
This is the main constructor.
|
Modifier and Type | Method and Description |
---|---|
static StrandDiffSM |
DifferentiableStatisticalModelFactory.createStrandModel(DifferentiableStatisticalModel model)
This method allows to create a
StrandDiffSM that allows to score binding sites on both strand of DNA. |
Constructor and Description |
---|
IndependentProductDiffSM(double ess,
boolean plugIn,
DifferentiableStatisticalModel... functions)
This constructor creates an instance of an
IndependentProductDiffSM from a given series of
independent DifferentiableStatisticalModel s. |
IndependentProductDiffSM(double ess,
boolean plugIn,
DifferentiableStatisticalModel[] functions,
int[] length)
This constructor creates an instance of an
IndependentProductDiffSM from given series of
independent DifferentiableStatisticalModel s and lengths. |
IndependentProductDiffSM(double ess,
boolean plugIn,
DifferentiableStatisticalModel[] functions,
int[] index,
int[] length,
boolean[] reverse)
This is the main constructor.
|
MappingDiffSM(AlphabetContainer originalAlphabetContainer,
DifferentiableStatisticalModel nsf,
DiscreteAlphabetMapping... mapping)
The main constructor creating a
MappingDiffSM . |
Constructor and Description |
---|
StrandDiffSM(DifferentiableStatisticalModel function,
double forwardPartOfESS,
int starts,
boolean plugIn,
StrandDiffSM.InitMethod initMethod)
This constructor creates a StrandDiffSM that optimizes the usage of each strand.
|
StrandDiffSM(DifferentiableStatisticalModel function,
int starts,
boolean plugIn,
StrandDiffSM.InitMethod initMethod,
double forward)
This constructor creates a StrandDiffSM that has a fixed frequency for the strand usage.
|
Constructor and Description |
---|
MixtureDurationDiffSM(int starts,
DurationDiffSM... function)
The main constructor of a
MixtureDurationDiffSM . |
Modifier and Type | Method and Description |
---|---|
double |
UniformTrainSM.getLogProbFor(Sequence sequence,
int startpos,
int endpos) |
Constructor and Description |
---|
CompositeTrainSM(AlphabetContainer alphabets,
int[] assignment,
TrainableStatisticalModel... models)
Creates a new
CompositeTrainSM . |
Modifier and Type | Method and Description |
---|---|
static double |
ConstraintManager.countInhomogeneous(AlphabetContainer alphabets,
int length,
DataSet data,
double[] weights,
boolean reset,
Constraint... constr)
Fills the (inhomogeneous)
constr with the weighted absolute frequency of the DataSet
data and computes the frequencies will not be computed. |
Modifier and Type | Method and Description |
---|---|
DataSet |
HomogeneousTrainSM.emitDataSet(int no,
int... length)
|
protected abstract Sequence |
HomogeneousTrainSM.getRandomSequence(Random r,
int length)
This method creates a random
Sequence from a trained homogeneous
model. |
protected Sequence |
HomogeneousMM.getRandomSequence(Random r,
int length) |
Modifier and Type | Method and Description |
---|---|
SymmetricTensor |
StructureLearner.getTensor(DataSet data,
double[] weights,
byte order,
StructureLearner.LearningType method)
This method can be used to compute a
Tensor that can be used to
determine the optimal structure. |
Constructor and Description |
---|
SharedStructureMixture(FSDAGTrainSM[] m,
StructureLearner.ModelType model,
byte order,
int starts,
boolean estimateComponentProbs,
double[] weights,
double alpha,
TerminationCondition tc)
Creates a new
SharedStructureMixture instance with all relevant
values. |
SharedStructureMixture(FSDAGTrainSM[] m,
StructureLearner.ModelType model,
byte order,
int starts,
double[] weights,
double alpha,
TerminationCondition tc)
Creates a new
SharedStructureMixture instance with fixed
component weights. |
SharedStructureMixture(FSDAGTrainSM[] m,
StructureLearner.ModelType model,
byte order,
int starts,
double alpha,
TerminationCondition tc)
Creates a new
SharedStructureMixture instance which estimates the
component probabilities/weights. |
Constructor and Description |
---|
AbstractHMM(HMMTrainingParameterSet trainingParameterSet,
String[] name,
int[] emissionIdx,
boolean[] forward,
Emission[] emission)
This is the main constructor for an HMM.
|
Constructor and Description |
---|
SamplingPhyloHMM(SamplingHMMTrainingParameterSet trainingParameterSet,
String[] name,
int[] emissionIdx,
boolean[] forward,
PhyloDiscreteEmission[] emission,
TransitionElement... te)
This is the main constructor for a hidden markov model with phylogenetic emission(s)
This model can be trained using a metropolis hastings algorithm
|
Constructor and Description |
---|
AbstractMixtureTrainSM(int length,
TrainableStatisticalModel[] models,
boolean[] optimizeModel,
int dimension,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new
AbstractMixtureTrainSM . |
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
double[] weights,
int starts,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates an instance using EM and fixed component probabilities.
|
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
double[] weights,
int starts,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and fixed component
probabilities.
|
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new
MixtureTrainSM . |
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
int starts,
double[] componentHyperParams,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates an instance using EM and estimating the component probabilities.
|
MixtureTrainSM(int length,
TrainableStatisticalModel[] models,
int starts,
double[] componentHyperParams,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and sampling the component
probabilities.
|
StrandTrainSM(TrainableStatisticalModel model,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double forwardStrandProb,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new
StrandTrainSM . |
StrandTrainSM(TrainableStatisticalModel model,
int starts,
double[] componentHyperParams,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates an instance using EM and estimating the component probabilities.
|
StrandTrainSM(TrainableStatisticalModel model,
int starts,
double[] componentHyperParams,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and sampling the component
probabilities.
|
StrandTrainSM(TrainableStatisticalModel model,
int starts,
double forwardStrandProb,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates an instance using EM and fixed component probabilities.
|
StrandTrainSM(TrainableStatisticalModel model,
int starts,
double forwardStrandProb,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates an instance using Gibbs Sampling and fixed component
probabilities.
|
Constructor and Description |
---|
HiddenMotifMixture(TrainableStatisticalModel[] models,
boolean[] optimzeArray,
int components,
int starts,
boolean estimateComponentProbs,
double[] componentHyperParams,
double[] weights,
PositionPrior posPrior,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new
HiddenMotifMixture . |
ZOOPSTrainSM(TrainableStatisticalModel motif,
TrainableStatisticalModel bg,
boolean trainOnlyMotifModel,
int starts,
double[] componentHyperParams,
double[] weights,
PositionPrior posPrior,
AbstractMixtureTrainSM.Algorithm algorithm,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization,
int initialIteration,
int stationaryIteration,
BurnInTest burnInTest)
Creates a new
ZOOPSTrainSM . |
ZOOPSTrainSM(TrainableStatisticalModel motif,
TrainableStatisticalModel bg,
boolean trainOnlyMotifModel,
int starts,
double[] componentHyperParams,
PositionPrior posPrior,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates a new
ZOOPSTrainSM using EM and estimating
the probability for finding a motif. |
ZOOPSTrainSM(TrainableStatisticalModel motif,
TrainableStatisticalModel bg,
boolean trainOnlyMotifModel,
int starts,
double motifProb,
PositionPrior posPrior,
double alpha,
TerminationCondition tc,
AbstractMixtureTrainSM.Parameterization parametrization)
Creates a new
ZOOPSTrainSM using EM and fixed
probability for finding a motif. |