Package | Description |
---|---|
de.jstacs.classifiers |
This package provides the framework for any classifier.
|
de.jstacs.classifiers.assessment |
This package allows to assess classifiers.
It contains the class ClassifierAssessment that
is used as a super-class of all implemented methodologies of
an assessment to assess classifiers. |
de.jstacs.classifiers.differentiableSequenceScoreBased |
Provides the classes for
Classifier s that are based on SequenceScore s.It includes a sub-package for discriminative objective functions, namely conditional likelihood and supervised posterior, and a separate sub-package for the parameter priors, that can be used for the supervised posterior. |
de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix |
Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModel s by
a unified generative-discriminative learning principle. |
de.jstacs.classifiers.differentiableSequenceScoreBased.msp |
Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModel s either
by maximum supervised posterior (MSP) or by maximum conditional likelihood (MCL). |
de.jstacs.classifiers.differentiableSequenceScoreBased.sampling |
Provides the classes for
AbstractScoreBasedClassifier s that are based on
SamplingDifferentiableStatisticalModel s
and that sample parameters using the Metropolis-Hastings algorithm. |
de.jstacs.classifiers.trainSMBased |
Provides the classes for
Classifier s that are based on TrainableStatisticalModel s. |
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared |
Modifier and Type | Class and Description |
---|---|
class |
AbstractScoreBasedClassifier
This class is the main class for all score based classifiers.
|
class |
MappingClassifier
This class allows the user to train the classifier on a given number of
classes and to evaluate the classifier on a smaller number of classes by
mapping classes together.
|
Modifier and Type | Method and Description |
---|---|
AbstractClassifier |
AbstractClassifier.clone() |
static AbstractClassifier |
ClassifierFactory.createClassifier(DifferentiableSequenceScore... models)
Creates a classifier that is based on at least two
DifferentiableSequenceScore s. |
static AbstractClassifier |
ClassifierFactory.createClassifier(double[] beta,
DifferentiableStatisticalModel... models)
Creates a classifier that is based on at least two
DifferentiableStatisticalModel s. |
static AbstractClassifier |
ClassifierFactory.createClassifier(LearningPrinciple principle,
DifferentiableStatisticalModel... models)
Creates a classifier that is based on at least two
DifferentiableStatisticalModel s. |
static AbstractClassifier |
ClassifierFactory.createGenerativeClassifier(TrainableStatisticalModel... models)
Creates a classifier that is based on at least two
TrainableStatisticalModel s. |
Modifier and Type | Field and Description |
---|---|
protected AbstractClassifier[] |
ClassifierAssessment.myAbstractClassifier
This array contains the internal used classifiers.
|
Modifier and Type | Method and Description |
---|---|
AbstractClassifier[] |
ClassifierAssessment.getClassifier()
Returns a deep copy of all classifiers that have been or will be used in
this assessment.
|
Constructor and Description |
---|
ClassifierAssessment(AbstractClassifier... aCs)
Creates a new
ClassifierAssessment from a set of
AbstractClassifier s. |
ClassifierAssessment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given
AbstractClassifier s and, in addition, classifiers that will be
constructed using the given TrainableStatisticalModel s. |
ClassifierAssessment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new
ClassifierAssessment from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
KFoldCrossValidation(AbstractClassifier... aCs)
Creates a new
KFoldCrossValidation from a set of
AbstractClassifier s. |
KFoldCrossValidation(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given
AbstractClassifier s and those constructed using the given
TrainableStatisticalModel s by a KFoldCrossValidation
. |
KFoldCrossValidation(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new
KFoldCrossValidation from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
RepeatedHoldOutExperiment(AbstractClassifier... aCs)
Creates a new
RepeatedHoldOutExperiment from a set of
AbstractClassifier s. |
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given
AbstractClassifier s and those constructed using the given
TrainableStatisticalModel s by a
RepeatedHoldOutExperiment . |
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new
RepeatedHoldOutExperiment from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
RepeatedSubSamplingExperiment(AbstractClassifier... aCs)
Creates a new
RepeatedSubSamplingExperiment from a set of
AbstractClassifier s. |
RepeatedSubSamplingExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given
AbstractClassifier s and those constructed using the given
TrainableStatisticalModel s by a
RepeatedSubSamplingExperiment . |
RepeatedSubSamplingExperiment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new
RepeatedSubSamplingExperiment from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
Sampled_RepeatedHoldOutExperiment(AbstractClassifier... aCs)
Creates a new
Sampled_RepeatedHoldOutExperiment from a set of
AbstractClassifier s. |
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given
AbstractClassifier s and those constructed using the given
TrainableStatisticalModel s by a
Sampled_RepeatedHoldOutExperiment . |
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new
Sampled_RepeatedHoldOutExperiment from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
Modifier and Type | Class and Description |
---|---|
class |
ScoreClassifier
This abstract class implements the main functionality of a
DifferentiableSequenceScore based classifier. |
Modifier and Type | Class and Description |
---|---|
class |
GenDisMixClassifier
This class implements a classifier the optimizes the following function
![]() |
Modifier and Type | Class and Description |
---|---|
class |
MSPClassifier
This class implements a classifier that allows the training via MCL or MSP principle.
|
Modifier and Type | Class and Description |
---|---|
class |
SamplingGenDisMixClassifier
A classifier that samples its parameters from a
LogGenDisMixFunction using the
Metropolis-Hastings algorithm. |
class |
SamplingScoreBasedClassifier
A classifier that samples the parameters of
SamplingDifferentiableStatisticalModel s by the Metropolis-Hastings algorithm. |
Modifier and Type | Class and Description |
---|---|
class |
TrainSMBasedClassifier
Classifier that works on
TrainableStatisticalModel s for each of the different classes. |
Modifier and Type | Class and Description |
---|---|
class |
SharedStructureClassifier
This class enables you to learn the structure on all classes of the
classifier together.
|