Package | Description |
---|---|
de.jstacs.algorithms.optimization |
Provides classes for different types of algorithms that are not directly linked to the modelling components of Jstacs: Algorithms on graphs, algorithms for numerical optimization, and a basic alignment algorithm.
|
de.jstacs.classifiers.differentiableSequenceScoreBased |
Provides the classes for
Classifier s that are based on SequenceScore s.It includes a sub-package for discriminative objective functions, namely conditional likelihood and supervised posterior, and a separate sub-package for the parameter priors, that can be used for the supervised posterior. |
de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix |
Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModel s by
a unified generative-discriminative learning principle. |
de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior |
Provides a general definition of a parameter log-prior and a number of implementations of Laplace and Gaussian priors.
|
de.jstacs.motifDiscovery |
This package provides the framework including the interface for any de novo motif discoverer.
|
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous |
This package contains various inhomogeneous models.
|
Modifier and Type | Class and Description |
---|---|
class |
NegativeDifferentiableFunction
|
class |
NumericalDifferentiableFunction
This class is the framework for any numerical differentiable function
![]() |
Modifier and Type | Method and Description |
---|---|
static int |
Optimizer.conjugateGradientsFR(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The conjugate gradient algorithm by Fletcher and Reeves.
|
static int |
Optimizer.conjugateGradientsPR(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The conjugate gradient algorithm by Polak and Ribière.
|
static int |
Optimizer.conjugateGradientsPRP(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The conjugate gradient algorithm by Polak and Ribière
called "Polak-Ribière-Positive".
|
static int |
Optimizer.limitedMemoryBFGS(DifferentiableFunction f,
double[] currentValues,
byte m,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The Broyden-Fletcher-Goldfarb-Shanno version
of limited memory quasi-Newton methods.
|
static int |
Optimizer.optimize(byte algorithm,
DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out)
This method enables you to use all different implemented optimization
algorithms by only one method.
|
static int |
Optimizer.optimize(byte algorithm,
DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
This method enables you to use all different implemented optimization
algorithms by only one method.
|
static int |
Optimizer.quasiNewtonBFGS(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The Broyden-Fletcher-Goldfarb-Shanno version
of the quasi-Newton method.
|
static int |
Optimizer.quasiNewtonDFP(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The Davidon-Fletcher-Powell version of the
quasi-Newton method.
|
static int |
Optimizer.steepestDescent(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The steepest descent.
|
Constructor and Description |
---|
NegativeDifferentiableFunction(DifferentiableFunction f)
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractMultiThreadedOptimizableFunction
This class enables the user to exploit all CPUs of an computer by using threads.
|
class |
AbstractOptimizableFunction
This class extends
OptimizableFunction and implements some common
methods. |
class |
DiffSSBasedOptimizableFunction
This abstract class is the basis of all multi-threaded
OptimizableFunction s that are based on DifferentiableSequenceScore s. |
class |
OptimizableFunction
This is the main function for the
ScoreClassifier . |
Modifier and Type | Class and Description |
---|---|
class |
LogGenDisMixFunction
This class implements the the following function
![]() |
class |
OneDataSetLogGenDisMixFunction
This class implements the the following function
![]() ![]() ![]() |
Modifier and Type | Class and Description |
---|---|
class |
CompositeLogPrior
This class implements a composite prior that can be used for DifferentiableStatisticalModel.
|
class |
DoesNothingLogPrior
This class defines a
LogPrior that does not penalize any parameter. |
class |
LogPrior
The abstract class for any log-prior used e.g.
|
class |
SeparateGaussianLogPrior
Class for a
LogPrior that defines a Gaussian prior on the parameters
of a set of DifferentiableStatisticalModel s
and a set of class parameters. |
class |
SeparateLaplaceLogPrior
Class for a
LogPrior that defines a Laplace prior on the parameters
of a set of DifferentiableStatisticalModel s
and a set of class parameters. |
class |
SeparateLogPrior
Abstract class for priors that penalize each parameter value independently
and have some variances (and possible means) as hyperparameters.
|
class |
SimpleGaussianSumLogPrior
This class implements a prior that is a product of Gaussian distributions
with mean 0 and equal variance for each parameter.
|
Modifier and Type | Method and Description |
---|---|
static boolean |
MutableMotifDiscovererToolbox.doHeuristicSteps(DifferentiableSequenceScore[] funs,
DataSet[] data,
double[][] weights,
DiffSSBasedOptimizableFunction opt,
DifferentiableFunction neg,
byte algorithm,
double linEps,
StartDistanceForecaster startDistance,
SafeOutputStream out,
boolean breakOnChanged,
History[][] hist,
int[][] minimalNewLength,
boolean maxPos)
This method tries to make some heuristic step if at least one
DifferentiableSequenceScore is a MutableMotifDiscoverer . |
static boolean |
MutableMotifDiscovererToolbox.findModification(int clazz,
int motif,
MutableMotifDiscoverer mmd,
DifferentiableSequenceScore[] score,
DataSet[] data,
double[][] weights,
DiffSSBasedOptimizableFunction opt,
DifferentiableFunction neg,
byte algo,
double linEps,
StartDistanceForecaster startDistance,
SafeOutputStream out,
History hist,
int minimalNewLength,
boolean maxPos)
This method tries to find a modification, i.e.
|
Modifier and Type | Class and Description |
---|---|
static class |
MEMTools.DualFunction
The dual function to the constraint problem of learning MEM's.
|