|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectde.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.MEManager
public abstract class MEManager
This class is the super class for all maximum entropy models
Field Summary | |
---|---|
protected MEM[] |
factors
The independent maximum entropy models. |
Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM |
---|
DEFAULT_STREAM, sostream |
Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM |
---|
params, trained |
Fields inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel |
---|
alphabets, length |
Constructor Summary | |
---|---|
MEManager(MEManagerParameterSet params)
Creates a new MEManager from a given
MEManagerParameterSet . |
|
MEManager(StringBuffer stringBuff)
The standard constructor for the interface Storable . |
Method Summary | |
---|---|
MEManager |
clone()
Follows the conventions of Object 's clone() -method. |
DataSet |
emitDataSet(int n,
int... lengths)
This method returns a DataSet object containing artificial
sequence(s). |
protected MEM[] |
getFactors(ArrayList<int[]> list,
boolean reduce,
ConstraintManager.Decomposition decomposition)
This method returns an array of independent maximum entropy models parsed from the given constraints. |
protected MEM[] |
getFactors(String constraints,
boolean reduce,
ConstraintManager.Decomposition decomposition)
This method returns an array of independent maximum entropy models parsed from the given constraints. |
protected StringBuffer |
getFurtherModelInfos()
Returns further model information as a StringBuffer . |
double |
getLogPriorTerm()
Returns a value that is proportional to the log of the prior. |
double |
getLogProbFor(Sequence sequence,
int startpos,
int endpos)
Returns the logarithm of the probability of (a part of) the given sequence given the model. |
NumericalResultSet |
getNumericalCharacteristics()
Returns the subset of numerical values that are also returned by SequenceScore.getCharacteristics() . |
String |
getStructure()
Returns a String representation of the underlying graph. |
protected void |
setFurtherModelInfos(StringBuffer xml)
This method replaces the internal model information with those from a StringBuffer . |
String |
toString(NumberFormat nf)
This method returns a String representation of the instance. |
protected void |
trainFactors(DataSet data,
double[] weights)
This method trains the internal MEM array,
i.e., it optimizes the parameters of the underlying MEMConstraint s. |
Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.InhomogeneousDGTrainSM |
---|
check, set, setOutputStream |
Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.discrete.DiscreteGraphicalTrainSM |
---|
fromXML, getCurrentParameterSet, getDescription, getESS, getXMLTag, isInitialized, toXML |
Methods inherited from class de.jstacs.sequenceScores.statisticalModels.trainable.AbstractTrainableStatisticalModel |
---|
getAlphabetContainer, getCharacteristics, getLength, getLogProbFor, getLogProbFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getLogScoreFor, getMaximalMarkovOrder, toString, train |
Methods inherited from class java.lang.Object |
---|
equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait |
Methods inherited from interface de.jstacs.sequenceScores.statisticalModels.trainable.TrainableStatisticalModel |
---|
train |
Methods inherited from interface de.jstacs.sequenceScores.SequenceScore |
---|
getInstanceName |
Field Detail |
---|
protected MEM[] factors
Constructor Detail |
---|
public MEManager(MEManagerParameterSet params) throws CloneNotSupportedException, IllegalArgumentException, NonParsableException
MEManager
from a given
MEManagerParameterSet
.
params
- the given parameter set
CloneNotSupportedException
- if the parameter set could not be cloned
IllegalArgumentException
- if the parameter set is not instantiated
NonParsableException
- if the parameter set is not parsableInhomogeneousDGTrainSM.InhomogeneousDGTrainSM(de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.parameters.IDGTrainSMParameterSet)
public MEManager(StringBuffer stringBuff) throws NonParsableException
Storable
.
Creates a new MEManager
out of its XML representation.
stringBuff
- the XML representation as StringBuffer
NonParsableException
- if the MEManager
could not be reconstructed
out of the XML representation (the StringBuffer
could
not be parsed)Storable
,
InhomogeneousDGTrainSM.InhomogeneousDGTrainSM(StringBuffer)
Method Detail |
---|
public MEManager clone() throws CloneNotSupportedException
AbstractTrainableStatisticalModel
Object
's clone()
-method.
clone
in interface SequenceScore
clone
in interface TrainableStatisticalModel
clone
in class InhomogeneousDGTrainSM
AbstractTrainableStatisticalModel
(the member-AlphabetContainer
isn't deeply cloned since
it is assumed to be immutable). The type of the returned object
is defined by the class X
directly inherited from
AbstractTrainableStatisticalModel
. Hence X
's
clone()
-method should work as:Object o = (X)super.clone();
o
defined by
X
that are not of simple data-types like
int
, double
, ... have to be deeply
copied return o
CloneNotSupportedException
- if something went wrong while cloningpublic DataSet emitDataSet(int n, int... lengths) throws NotTrainedException, Exception
StatisticalModel
DataSet
object containing artificial
sequence(s).
emitDataSet( int n, int l )
should return a data set with
n
sequences of length l
.
emitDataSet( int n, int[] l )
should return a data set with
n
sequences which have a sequence length corresponding to
the entry in the given array l
.
emitDataSet( int n )
and
emitDataSet( int n, null )
should return a data set with
n
sequences of length of the model (
SequenceScore.getLength()
).
Exception
.
emitDataSet
in interface StatisticalModel
emitDataSet
in class AbstractTrainableStatisticalModel
n
- the number of sequences that should be contained in the
returned data setlengths
- the length of the sequences for a homogeneous model; for an
inhomogeneous model this parameter should be null
or an array of size 0.
DataSet
containing the artificial sequence(s)
NotTrainedException
- if the model is not trained yet
Exception
- if the emission did not succeedDataSet
public double getLogPriorTerm() throws Exception
StatisticalModel
Exception
- if something went wrongpublic double getLogProbFor(Sequence sequence, int startpos, int endpos) throws NotTrainedException, Exception
StatisticalModel
StatisticalModel.getLogProbFor(Sequence, int)
by the fact, that the model could be
e.g. homogeneous and therefore the length of the sequences, whose
probability should be returned, is not fixed. Additionally, the end
position of the part of the given sequence is given and the probability
of the part from position startpos
to endpos
(inclusive) should be returned.
length
and the alphabets
define the type of
data that can be modeled and therefore both has to be checked.
sequence
- the given sequencestartpos
- the start position within the given sequenceendpos
- the last position to be taken into account
NotTrainedException
- if the model is not trained yet
Exception
- if the sequence could not be handled (e.g.
startpos >
, endpos
> sequence.length
, ...) by the modelpublic NumericalResultSet getNumericalCharacteristics()
SequenceScore
SequenceScore.getCharacteristics()
.
public String getStructure() throws NotTrainedException
InhomogeneousDGTrainSM
String
representation of the underlying graph.
getStructure
in class InhomogeneousDGTrainSM
String
representation of the underlying graph
NotTrainedException
- if the structure is not set, this can only be the case if the
model is not trainedpublic String toString(NumberFormat nf)
SequenceScore
String
representation of the instance.
toString
in interface SequenceScore
toString
in class DiscreteGraphicalTrainSM
nf
- the NumberFormat
for the String
representation of parameters or probabilities
String
representation of the instanceprotected MEM[] getFactors(String constraints, boolean reduce, ConstraintManager.Decomposition decomposition)
constraints
- the constraints to build the maximum entropy modelreduce
- a switch whether redundant constraint should be removeddecomposition
- a switch how to decompose the complete model if possible
protected MEM[] getFactors(ArrayList<int[]> list, boolean reduce, ConstraintManager.Decomposition decomposition)
list
- a list of positions arrays that build the constraintsreduce
- a switch whether redundant constraint should be removeddecomposition
- a switch how to decompose the complete model if possible
protected StringBuffer getFurtherModelInfos()
DiscreteGraphicalTrainSM
StringBuffer
.
getFurtherModelInfos
in class DiscreteGraphicalTrainSM
DiscreteGraphicalTrainSM.toXML()
protected void trainFactors(DataSet data, double[] weights) throws Exception
MEM
array,
i.e., it optimizes the parameters of the underlying MEMConstraint
s.
data
- the dataweights
- the weights for the data, can be null
Exception
- if some error occurs in the training processprotected void setFurtherModelInfos(StringBuffer xml) throws NonParsableException
DiscreteGraphicalTrainSM
StringBuffer
.
setFurtherModelInfos
in class DiscreteGraphicalTrainSM
xml
- contains the model information like parameters of the
distribution etc. in XML format
NonParsableException
- if the StringBuffer
could not be parsedDiscreteGraphicalTrainSM.fromXML(StringBuffer)
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |