|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |
Packages that use SamplingScoreBasedClassifierParameterSet | |
---|---|
de.jstacs.classifiers.differentiableSequenceScoreBased.sampling | Provides the classes for AbstractScoreBasedClassifier s that are based on
SamplingDifferentiableStatisticalModel s
and that sample parameters using the Metropolis-Hastings algorithm. |
Uses of SamplingScoreBasedClassifierParameterSet in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling |
---|
Fields in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling declared as SamplingScoreBasedClassifierParameterSet | |
---|---|
protected SamplingScoreBasedClassifierParameterSet |
SamplingScoreBasedClassifier.params
Parameters |
Methods in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling that return SamplingScoreBasedClassifierParameterSet | |
---|---|
SamplingScoreBasedClassifierParameterSet |
SamplingScoreBasedClassifierParameterSet.clone()
|
Constructors in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling with parameters of type SamplingScoreBasedClassifierParameterSet | |
---|---|
SamplingScoreBasedClassifier(SamplingScoreBasedClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
SamplingDifferentiableStatisticalModel... scoringFunctions)
Creates a new SamplingScoreBasedClassifier using the parameters in params ,
a specified BurnInTest (or null for no burn-in test), a set of sampling variances,
which may be different for each of the classes (in analogy to equivalent sample size for the Dirichlet distribution),
and set set of SamplingDifferentiableStatisticalModel s for each of the classes. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |