|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |
Packages that use LogPrior | |
---|---|
de.jstacs.classifiers.differentiableSequenceScoreBased | Provides the classes for Classifier s that are based on SequenceScore s. |
de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix | Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModel s by
a unified generative-discriminative learning principle |
de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior | Provides a general definition of a parameter log-prior and a number of implementations of Laplace and Gaussian priors |
de.jstacs.classifiers.differentiableSequenceScoreBased.msp | Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModel s either
by maximum supervised posterior (MSP) or by maximum conditional likelihood (MCL) |
de.jstacs.classifiers.differentiableSequenceScoreBased.sampling | Provides the classes for AbstractScoreBasedClassifier s that are based on
SamplingDifferentiableStatisticalModel s
and that sample parameters using the Metropolis-Hastings algorithm. |
Uses of LogPrior in de.jstacs.classifiers.differentiableSequenceScoreBased |
---|
Fields in de.jstacs.classifiers.differentiableSequenceScoreBased declared as LogPrior | |
---|---|
protected LogPrior |
DiffSSBasedOptimizableFunction.prior
The prior that is used in this function. |
Constructors in de.jstacs.classifiers.differentiableSequenceScoreBased with parameters of type LogPrior | |
---|---|
DiffSSBasedOptimizableFunction(int threads,
DifferentiableSequenceScore[] score,
DataSet[] data,
double[][] weights,
LogPrior prior,
boolean norm,
boolean freeParams)
Creates an instance with the underlying infrastructure. |
Uses of LogPrior in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix |
---|
Fields in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix declared as LogPrior | |
---|---|
protected LogPrior |
GenDisMixClassifier.prior
The prior that is used in this classifier. |
Methods in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix with parameters of type LogPrior | |
---|---|
static GenDisMixClassifier[] |
GenDisMixClassifier.create(GenDisMixClassifierParameterSet params,
LogPrior prior,
double[] weights,
DifferentiableStatisticalModel[]... functions)
This method creates an array of GenDisMixClassifiers by using the cross-product of the given DifferentiableStatisticalModel s. |
void |
GenDisMixClassifier.setPrior(LogPrior prior)
This method set a new prior that should be used for optimization. |
Constructors in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix with parameters of type LogPrior | |
---|---|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double[] beta,
DifferentiableStatisticalModel... score)
The main constructor. |
|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double lastScore,
double[] beta,
DifferentiableSequenceScore... score)
This constructor creates an instance and sets the value of the last (external) optimization. |
|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double lastScore,
double[] beta,
DifferentiableStatisticalModel... score)
This constructor creates an instance and sets the value of the last (external) optimization. |
|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double genBeta,
double disBeta,
double priorBeta,
DifferentiableStatisticalModel... score)
This convenience constructor agglomerates the genBeta, disBeta, and priorBeta into an array and calls the main constructor. |
|
GenDisMixClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
LearningPrinciple key,
DifferentiableStatisticalModel... score)
This convenience constructor creates an array of weights for an elementary learning principle and calls the main constructor. |
|
LogGenDisMixFunction(int threads,
DifferentiableSequenceScore[] score,
DataSet[] data,
double[][] weights,
LogPrior prior,
double[] beta,
boolean norm,
boolean freeParams)
The constructor for creating an instance that can be used in an Optimizer . |
|
OneDataSetLogGenDisMixFunction(int threads,
DifferentiableSequenceScore[] score,
DataSet data,
double[][] weights,
LogPrior prior,
double[] beta,
boolean norm,
boolean freeParams)
The constructor for creating an instance that can be used in an Optimizer . |
Uses of LogPrior in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior |
---|
Subclasses of LogPrior in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior | |
---|---|
class |
CompositeLogPrior
This class implements a composite prior that can be used for DifferentiableStatisticalModel. |
class |
DoesNothingLogPrior
This class defines a LogPrior that does not penalize any parameter. |
class |
SeparateGaussianLogPrior
Class for a LogPrior that defines a Gaussian prior on the parameters
of a set of DifferentiableStatisticalModel s
and a set of class parameters. |
class |
SeparateLaplaceLogPrior
Class for a LogPrior that defines a Laplace prior on the parameters
of a set of DifferentiableStatisticalModel s
and a set of class parameters. |
class |
SeparateLogPrior
Abstract class for priors that penalize each parameter value independently and have some variances (and possible means) as hyperparameters. |
class |
SimpleGaussianSumLogPrior
This class implements a prior that is a product of Gaussian distributions with mean 0 and equal variance for each parameter. |
Methods in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior that return LogPrior | |
---|---|
abstract LogPrior |
LogPrior.getNewInstance()
This method returns an empty new instance of the current prior. |
LogPrior |
DoesNothingLogPrior.getNewInstance()
|
Uses of LogPrior in de.jstacs.classifiers.differentiableSequenceScoreBased.msp |
---|
Constructors in de.jstacs.classifiers.differentiableSequenceScoreBased.msp with parameters of type LogPrior | |
---|---|
MSPClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
DifferentiableSequenceScore... score)
The default constructor that creates a new MSPClassifier from a
given parameter set, a prior and DifferentiableSequenceScore s for the
classes. |
|
MSPClassifier(GenDisMixClassifierParameterSet params,
LogPrior prior,
double lastScore,
DifferentiableSequenceScore... score)
This constructor that creates a new MSPClassifier from a
given parameter set, a prior and DifferentiableSequenceScore s for the
classes. |
Uses of LogPrior in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling |
---|
Constructors in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling with parameters of type LogPrior | |
---|---|
SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
LogPrior prior,
double[] beta,
SamplingDifferentiableStatisticalModel... scoringFunctions)
Creates a new SamplingGenDisMixClassifier using the external parameters
params , a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, weights beta for the three components of the
LogGenDisMixFunction , i.e., likelihood, conditional likelihood, and prior,
and scoring functions that model the distribution for each of the classes. |
|
SamplingGenDisMixClassifier(SamplingGenDisMixClassifierParameterSet params,
BurnInTest burnInTest,
double[] classVariances,
LogPrior prior,
LearningPrinciple principle,
SamplingDifferentiableStatisticalModel... scoringFunctions)
Creates a new SamplingGenDisMixClassifier using the external parameters
params , a burn-in test, a set of sampling variances for the different classes,
a prior on the parameters, a learning principle,
and scoring functions that model the distribution for each of the classes. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |