|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |
Packages that use AbstractClassifier | |
---|---|
de.jstacs.classifiers | This package provides the framework for any classifier. |
de.jstacs.classifiers.assessment | This package allows to assess classifiers. |
de.jstacs.classifiers.differentiableSequenceScoreBased | Provides the classes for Classifier s that are based on SequenceScore s. |
de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix | Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModel s by
a unified generative-discriminative learning principle |
de.jstacs.classifiers.differentiableSequenceScoreBased.msp | Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModel s either
by maximum supervised posterior (MSP) or by maximum conditional likelihood (MCL) |
de.jstacs.classifiers.differentiableSequenceScoreBased.sampling | Provides the classes for AbstractScoreBasedClassifier s that are based on
SamplingDifferentiableStatisticalModel s
and that sample parameters using the Metropolis-Hastings algorithm. |
de.jstacs.classifiers.trainSMBased | Provides the classes for Classifier s that are based on TrainableStatisticalModel s |
de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared |
Uses of AbstractClassifier in de.jstacs.classifiers |
---|
Subclasses of AbstractClassifier in de.jstacs.classifiers | |
---|---|
class |
AbstractScoreBasedClassifier
This class is the main class for all score based classifiers. |
class |
MappingClassifier
This class allows the user to train the classifier on a given number of classes and to evaluate the classifier on a smaller number of classes by mapping classes together. |
Methods in de.jstacs.classifiers that return AbstractClassifier | |
---|---|
AbstractClassifier |
AbstractClassifier.clone()
|
Uses of AbstractClassifier in de.jstacs.classifiers.assessment |
---|
Fields in de.jstacs.classifiers.assessment declared as AbstractClassifier | |
---|---|
protected AbstractClassifier[] |
ClassifierAssessment.myAbstractClassifier
This array contains the internal used classifiers. |
Methods in de.jstacs.classifiers.assessment that return AbstractClassifier | |
---|---|
AbstractClassifier[] |
ClassifierAssessment.getClassifier()
Returns a deep copy of all classifiers that have been or will be used in this assessment. |
Constructors in de.jstacs.classifiers.assessment with parameters of type AbstractClassifier | |
---|---|
ClassifierAssessment(AbstractClassifier... aCs)
Creates a new ClassifierAssessment from a set of
AbstractClassifier s. |
|
ClassifierAssessment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given AbstractClassifier s and, in addition, classifiers that will be
constructed using the given TrainableStatisticalModel s. |
|
ClassifierAssessment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new ClassifierAssessment from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
|
KFoldCrossValidation(AbstractClassifier... aCs)
Creates a new KFoldCrossValidation from a set of
AbstractClassifier s. |
|
KFoldCrossValidation(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given AbstractClassifier s and those constructed using the given
TrainableStatisticalModel s by a KFoldCrossValidation
. |
|
KFoldCrossValidation(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new KFoldCrossValidation from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
|
RepeatedHoldOutExperiment(AbstractClassifier... aCs)
Creates a new RepeatedHoldOutExperiment from a set of
AbstractClassifier s. |
|
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given AbstractClassifier s and those constructed using the given
TrainableStatisticalModel s by a
RepeatedHoldOutExperiment . |
|
RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new RepeatedHoldOutExperiment from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
|
RepeatedSubSamplingExperiment(AbstractClassifier... aCs)
Creates a new RepeatedSubSamplingExperiment from a set of
AbstractClassifier s. |
|
RepeatedSubSamplingExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given AbstractClassifier s and those constructed using the given
TrainableStatisticalModel s by a
RepeatedSubSamplingExperiment . |
|
RepeatedSubSamplingExperiment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new RepeatedSubSamplingExperiment from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
|
Sampled_RepeatedHoldOutExperiment(AbstractClassifier... aCs)
Creates a new Sampled_RepeatedHoldOutExperiment from a set of
AbstractClassifier s. |
|
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
boolean buildClassifiersByCrossProduct,
TrainableStatisticalModel[]... aMs)
This constructor allows to assess a collection of given AbstractClassifier s and those constructed using the given
TrainableStatisticalModel s by a
Sampled_RepeatedHoldOutExperiment . |
|
Sampled_RepeatedHoldOutExperiment(AbstractClassifier[] aCs,
TrainableStatisticalModel[][] aMs,
boolean buildClassifiersByCrossProduct,
boolean checkAlphabetConsistencyAndLength)
Creates a new Sampled_RepeatedHoldOutExperiment from an array of
AbstractClassifier s and a two-dimensional array of TrainableStatisticalModel
s, which are combined to additional classifiers. |
Uses of AbstractClassifier in de.jstacs.classifiers.differentiableSequenceScoreBased |
---|
Subclasses of AbstractClassifier in de.jstacs.classifiers.differentiableSequenceScoreBased | |
---|---|
class |
ScoreClassifier
This abstract class implements the main functionality of a DifferentiableSequenceScore based classifier. |
Uses of AbstractClassifier in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix |
---|
Subclasses of AbstractClassifier in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix | |
---|---|
class |
GenDisMixClassifier
This class implements a classifier the optimizes the following function ![]() |
Uses of AbstractClassifier in de.jstacs.classifiers.differentiableSequenceScoreBased.msp |
---|
Subclasses of AbstractClassifier in de.jstacs.classifiers.differentiableSequenceScoreBased.msp | |
---|---|
class |
MSPClassifier
This class implements a classifier that allows the training via MCL or MSP principle. |
Uses of AbstractClassifier in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling |
---|
Subclasses of AbstractClassifier in de.jstacs.classifiers.differentiableSequenceScoreBased.sampling | |
---|---|
class |
SamplingGenDisMixClassifier
A classifier that samples its parameters from a LogGenDisMixFunction using the
Metropolis-Hastings algorithm. |
class |
SamplingScoreBasedClassifier
A classifier that samples the parameters of SamplingDifferentiableStatisticalModel s by the Metropolis-Hastings algorithm. |
Uses of AbstractClassifier in de.jstacs.classifiers.trainSMBased |
---|
Subclasses of AbstractClassifier in de.jstacs.classifiers.trainSMBased | |
---|---|
class |
TrainSMBasedClassifier
Classifier that works on TrainableStatisticalModel s for each of the different classes. |
Uses of AbstractClassifier in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared |
---|
Subclasses of AbstractClassifier in de.jstacs.sequenceScores.statisticalModels.trainable.discrete.inhomogeneous.shared | |
---|---|
class |
SharedStructureClassifier
This class enables you to learn the structure on all classes of the classifier together. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |