|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |
Packages that use TerminationException | |
---|---|
de.jstacs.algorithms.optimization | Provides classes for different types of algorithms that are not directly linked to the modelling components of Jstacs: Algorithms on graphs, algorithms for numerical optimization, and a basic alignment algorithm. |
Uses of TerminationException in de.jstacs.algorithms.optimization |
---|
Methods in de.jstacs.algorithms.optimization that throw TerminationException | |
---|---|
static int |
Optimizer.conjugateGradientsFR(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The conjugate gradient algorithm by Fletcher and Reeves. |
static int |
Optimizer.conjugateGradientsPR(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The conjugate gradient algorithm by Polak and Ribière. |
static int |
Optimizer.conjugateGradientsPRP(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The conjugate gradient algorithm by Polak and Ribière called "Polak-Ribière-Positive". |
static int |
Optimizer.limitedMemoryBFGS(DifferentiableFunction f,
double[] currentValues,
byte m,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The Broyden-Fletcher-Goldfarb-Shanno version of limited memory quasi-Newton methods. |
static int |
Optimizer.optimize(byte algorithm,
DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out)
This method enables you to use all different implemented optimization algorithms by only one method. |
static int |
Optimizer.optimize(byte algorithm,
DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
This method enables you to use all different implemented optimization algorithms by only one method. |
static int |
Optimizer.quasiNewtonBFGS(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The Broyden-Fletcher-Goldfarb-Shanno version of the quasi-Newton method. |
static int |
Optimizer.quasiNewtonDFP(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The Davidon-Fletcher-Powell version of the quasi-Newton method. |
static int |
Optimizer.steepestDescent(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The steepest descent. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |