|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |
Packages that use DimensionException | |
---|---|
de.jstacs.algorithms.optimization | Provides classes for different types of algorithms that are not directly linked to the modelling components of Jstacs: Algorithms on graphs, algorithms for numerical optimization, and a basic alignment algorithm. |
de.jstacs.classifiers.differentiableSequenceScoreBased | Provides the classes for Classifier s that are based on SequenceScore s. |
de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix | Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModel s by
a unified generative-discriminative learning principle |
de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior | Provides a general definition of a parameter log-prior and a number of implementations of Laplace and Gaussian priors |
Uses of DimensionException in de.jstacs.algorithms.optimization |
---|
Methods in de.jstacs.algorithms.optimization that throw DimensionException | |
---|---|
static int |
Optimizer.conjugateGradientsFR(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The conjugate gradient algorithm by Fletcher and Reeves. |
static int |
Optimizer.conjugateGradientsPR(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The conjugate gradient algorithm by Polak and Ribière. |
static int |
Optimizer.conjugateGradientsPRP(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The conjugate gradient algorithm by Polak and Ribière called "Polak-Ribière-Positive". |
double |
OneDimensionalFunction.evaluateFunction(double[] x)
|
double |
NegativeOneDimensionalFunction.evaluateFunction(double[] x)
|
double |
NegativeFunction.evaluateFunction(double[] x)
|
double |
NegativeDifferentiableFunction.evaluateFunction(double[] x)
|
double |
Function.evaluateFunction(double[] x)
Evaluates the function at a certain vector (in mathematical sense) x . |
double[] |
NumericalDifferentiableFunction.evaluateGradientOfFunction(double[] x)
Evaluates the gradient of a function at a certain vector (in mathematical sense) x numerically. |
double[] |
NegativeDifferentiableFunction.evaluateGradientOfFunction(double[] x)
|
abstract double[] |
DifferentiableFunction.evaluateGradientOfFunction(double[] x)
Evaluates the gradient of a function at a certain vector (in mathematical sense) x , i.e.,
![]() |
protected double[] |
DifferentiableFunction.findOneDimensionalMin(double[] x,
double[] d,
double alpha_0,
double fAlpha_0,
double linEps,
double startDistance)
This method is used to find an approximation of an one-dimensional subfunction. |
static int |
Optimizer.limitedMemoryBFGS(DifferentiableFunction f,
double[] currentValues,
byte m,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The Broyden-Fletcher-Goldfarb-Shanno version of limited memory quasi-Newton methods. |
static int |
Optimizer.optimize(byte algorithm,
DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out)
This method enables you to use all different implemented optimization algorithms by only one method. |
static int |
Optimizer.optimize(byte algorithm,
DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
This method enables you to use all different implemented optimization algorithms by only one method. |
static int |
Optimizer.quasiNewtonBFGS(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The Broyden-Fletcher-Goldfarb-Shanno version of the quasi-Newton method. |
static int |
Optimizer.quasiNewtonDFP(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The Davidon-Fletcher-Powell version of the quasi-Newton method. |
static int |
Optimizer.steepestDescent(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The steepest descent. |
Constructors in de.jstacs.algorithms.optimization that throw DimensionException | |
---|---|
OneDimensionalSubFunction(Function f,
double[] current,
double[] d)
Creates a new OneDimensionalSubFunction from a Function
f for the line search. |
Uses of DimensionException in de.jstacs.classifiers.differentiableSequenceScoreBased |
---|
Methods in de.jstacs.classifiers.differentiableSequenceScoreBased that throw DimensionException | |
---|---|
double |
AbstractMultiThreadedOptimizableFunction.evaluateFunction(double[] x)
|
double[] |
AbstractMultiThreadedOptimizableFunction.evaluateGradientOfFunction(double[] x)
|
protected abstract double |
AbstractMultiThreadedOptimizableFunction.joinFunction()
This method joins the partial results that have been computed using AbstractMultiThreadedOptimizableFunction.evaluateFunction(int, int, int, int, int) . |
abstract void |
OptimizableFunction.setParams(double[] current)
Sets the current values as parameters. |
void |
AbstractMultiThreadedOptimizableFunction.setParams(double[] params)
|
protected void |
DiffSSBasedOptimizableFunction.setParams(int index)
|
protected abstract void |
AbstractMultiThreadedOptimizableFunction.setParams(int index)
This method sets the parameters for thread index |
protected void |
DiffSSBasedOptimizableFunction.setThreadIndependentParameters()
|
protected abstract void |
AbstractMultiThreadedOptimizableFunction.setThreadIndependentParameters()
This method allows to set thread independent parameters. |
Uses of DimensionException in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix |
---|
Methods in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix that throw DimensionException | |
---|---|
protected double |
LogGenDisMixFunction.joinFunction()
|
Uses of DimensionException in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior |
---|
Methods in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior that throw DimensionException | |
---|---|
double |
SeparateLaplaceLogPrior.evaluateFunction(double[] x)
|
double |
SeparateGaussianLogPrior.evaluateFunction(double[] x)
|
double |
CompositeLogPrior.evaluateFunction(double[] x)
|
|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |