|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |
Packages that use DifferentiableFunction | |
---|---|
de.jstacs.algorithms.optimization | Provides classes for different types of algorithms that are not directly linked to the modelling components of Jstacs: Algorithms on graphs, algorithms for numerical optimization, and a basic alignment algorithm. |
de.jstacs.classifiers.differentiableSequenceScoreBased | Provides the classes for Classifier s that are based on SequenceScore s. |
de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix | Provides an implementation of a classifier that allows to train the parameters of a set of
DifferentiableStatisticalModel s by
a unified generative-discriminative learning principle |
de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior | Provides a general definition of a parameter log-prior and a number of implementations of Laplace and Gaussian priors |
de.jstacs.motifDiscovery | This package provides the framework including the interface for any de novo motif discoverer |
Uses of DifferentiableFunction in de.jstacs.algorithms.optimization |
---|
Subclasses of DifferentiableFunction in de.jstacs.algorithms.optimization | |
---|---|
class |
NegativeDifferentiableFunction
The negative function -f for a given
DifferentiableFunction f . |
class |
NumericalDifferentiableFunction
This class is the framework for any numerical differentiable function ![]() |
Methods in de.jstacs.algorithms.optimization with parameters of type DifferentiableFunction | |
---|---|
static int |
Optimizer.conjugateGradientsFR(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The conjugate gradient algorithm by Fletcher and Reeves. |
static int |
Optimizer.conjugateGradientsPR(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The conjugate gradient algorithm by Polak and Ribière. |
static int |
Optimizer.conjugateGradientsPRP(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The conjugate gradient algorithm by Polak and Ribière called "Polak-Ribière-Positive". |
static int |
Optimizer.limitedMemoryBFGS(DifferentiableFunction f,
double[] currentValues,
byte m,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The Broyden-Fletcher-Goldfarb-Shanno version of limited memory quasi-Newton methods. |
static int |
Optimizer.optimize(byte algorithm,
DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out)
This method enables you to use all different implemented optimization algorithms by only one method. |
static int |
Optimizer.optimize(byte algorithm,
DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
This method enables you to use all different implemented optimization algorithms by only one method. |
static int |
Optimizer.quasiNewtonBFGS(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The Broyden-Fletcher-Goldfarb-Shanno version of the quasi-Newton method. |
static int |
Optimizer.quasiNewtonDFP(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The Davidon-Fletcher-Powell version of the quasi-Newton method. |
static int |
Optimizer.steepestDescent(DifferentiableFunction f,
double[] currentValues,
TerminationCondition terminationMode,
double linEps,
StartDistanceForecaster startDistance,
OutputStream out,
Time t)
The steepest descent. |
Constructors in de.jstacs.algorithms.optimization with parameters of type DifferentiableFunction | |
---|---|
NegativeDifferentiableFunction(DifferentiableFunction f)
Creates the DifferentiableFunction f for which
-f should be calculated. |
Uses of DifferentiableFunction in de.jstacs.classifiers.differentiableSequenceScoreBased |
---|
Subclasses of DifferentiableFunction in de.jstacs.classifiers.differentiableSequenceScoreBased | |
---|---|
class |
AbstractMultiThreadedOptimizableFunction
This class enables the user to exploit all CPUs of an computer by using threads. |
class |
AbstractOptimizableFunction
This class extends OptimizableFunction and implements some common
methods. |
class |
DiffSSBasedOptimizableFunction
This abstract class is the basis of all multi-threaded OptimizableFunction s that are based on DifferentiableSequenceScore s. |
class |
OptimizableFunction
This is the main function for the ScoreClassifier . |
Uses of DifferentiableFunction in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix |
---|
Subclasses of DifferentiableFunction in de.jstacs.classifiers.differentiableSequenceScoreBased.gendismix | |
---|---|
class |
LogGenDisMixFunction
This class implements the the following function ![]() |
class |
OneDataSetLogGenDisMixFunction
This class implements the the following function ![]() ![]() ![]() |
Uses of DifferentiableFunction in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior |
---|
Subclasses of DifferentiableFunction in de.jstacs.classifiers.differentiableSequenceScoreBased.logPrior | |
---|---|
class |
CompositeLogPrior
This class implements a composite prior that can be used for DifferentiableStatisticalModel. |
class |
DoesNothingLogPrior
This class defines a LogPrior that does not penalize any parameter. |
class |
LogPrior
The abstract class for any log-prior used e.g. for maximum supervised posterior optimization. |
class |
SeparateGaussianLogPrior
Class for a LogPrior that defines a Gaussian prior on the parameters
of a set of DifferentiableStatisticalModel s
and a set of class parameters. |
class |
SeparateLaplaceLogPrior
Class for a LogPrior that defines a Laplace prior on the parameters
of a set of DifferentiableStatisticalModel s
and a set of class parameters. |
class |
SeparateLogPrior
Abstract class for priors that penalize each parameter value independently and have some variances (and possible means) as hyperparameters. |
class |
SimpleGaussianSumLogPrior
This class implements a prior that is a product of Gaussian distributions with mean 0 and equal variance for each parameter. |
Uses of DifferentiableFunction in de.jstacs.motifDiscovery |
---|
Methods in de.jstacs.motifDiscovery with parameters of type DifferentiableFunction | |
---|---|
static boolean |
MutableMotifDiscovererToolbox.doHeuristicSteps(DifferentiableSequenceScore[] funs,
DataSet[] data,
double[][] weights,
DiffSSBasedOptimizableFunction opt,
DifferentiableFunction neg,
byte algorithm,
double linEps,
StartDistanceForecaster startDistance,
SafeOutputStream out,
boolean breakOnChanged,
History[][] hist,
int[][] minimalNewLength,
boolean maxPos)
This method tries to make some heuristic step if at least one DifferentiableSequenceScore is a MutableMotifDiscoverer . |
static boolean |
MutableMotifDiscovererToolbox.findModification(int clazz,
int motif,
MutableMotifDiscoverer mmd,
DifferentiableSequenceScore[] score,
DataSet[] data,
double[][] weights,
DiffSSBasedOptimizableFunction opt,
DifferentiableFunction neg,
byte algo,
double linEps,
StartDistanceForecaster startDistance,
SafeOutputStream out,
History hist,
int minimalNewLength,
boolean maxPos)
This method tries to find a modification, i.e. shifting, shrinking, or expanding a motif, that is promising. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES All Classes |