Projects

From Jstacs
Revision as of 13:48, 3 May 2019 by Grau (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

This site contains projects that use Jstacs.

  • MotifAdjuster: a tool for computational reassessment of transcription factor binding site annotations
  • Prior: apples and oranges: avoiding different priors in Bayesian DNA sequence analysis
  • GenDisMix: unifying generative and discriminative learning principles
  • Dispom: de-novo discovery of differentially abundant transcription factor binding sites including their positional preference
  • MiMB: probabilistic approaches to transcription factor binding site prediction
  • SHMM: utilizing gene-pair orientations for improved analysis of ChIP-chip promoter array data
  • DSHMM: exploiting prior knowledge and gene distances in the analysis of tumor expression profiles
  • PHHMM: improved analysis of Array-CGH data
  • MeDIP-HMM: HMM-based analysis of DNA methylation profiles
  • ARHMM: integrating local chromosomal dependencies into the analysis of tumor expression profiles
  • FlowCap: molecular classification of acute myeloid leukaemia (AML) using flow cytometry data
  • TALgetter: prediction of TAL effector target sites
  • TALENoffer: genome-wide TALEN off-target prediction
  • Dimont: general approach for discriminative de-novo motif discovery from high-throughput data
  • AUC-PR: area under ROC and PR curves for weighted and unweighted data
  • Slim: Sparse local inhomogeneous mixture (Slim) models and dependency logos
  • PMMdeNovo: de novo motif discovery based on inhomogeneous parsimonious Markov models (PMMs) for exploiting intra-motif dependencies
  • AnnoTALE: identifying and analysing TALEs in Xanthomonas genomes, for clustering TALEs, for assigning novel TALEs to existing classes, for proposing TALE names using a unified nomenclature, and for predicting TALE targets
  • GeMoMa: Gene Model Mapper (GeMoMa) is a homology-based gene prediction program that uses the annotation of protein-coding genes in a reference genome to infer annotation of protein-coding genes in a target genome
  • InMoDe: tools for learning and visualizing intra-motif dependencies of DNA binding sites
  • Disentangler: two tools for analyzing complex features in a set of aligned transcription factor (TFBS) binding sites that can be used individually or within a joint pipeline.
  • PCTLearn: efficient learning of parsimonious context trees from sequence data.
  • Catchitt: collection of tools for predicting cell type-specific binding regions of transcription factors
  • PrediTALE: predict TALE target boxes using a novel model learned from quantitative data based on the RVD sequence of a TALE