
GeMoMa manual
July 28, 2020

Abstract

Gene Model Mapper (GeMoMa) is a homology-based gene prediction
program. GeMoMa uses the annotation of protein-coding genes in a ref-
erence genome to infer the annotation of protein-coding genes in a target
genome. Thereby, GeMoMa utilizes amino acid and intron position con-
servation. In addition, GeMoMa allows to incorporate RNA-seq evidence
for splice site prediction.

Figure 1: Illustration of the GeMoMa algorithm. GeMoMa uses tblastn to
search for homologs of all (partially) coding exons of the reference transcript.
Subsequently, a dynamic programming algorithm is used to determine the best
combination of the hits.

1

1 GeMoMa in a nutshell

There are 7 steps that are divided into 3 phases. However, if you do not have
any RNA-seq data you can skip the first phase. This guide only provides a
rough overview. If your are interested in individual parameters you can call:

java -jar GeMoMa-<version>.jar CLI <toolname>

which will provide descriptions of all available parameters.
Keep in mind that homology-based gene prediction only allows us to infer

genes with known peers in at least one reference organism. Hence, homology
based gene prediction might miss genes with no known peer in the reference
organism(s), even if these are expressed in the RNA-seq data. On the other
hand, homology-based gene prediction allows for inferring genes that are not or
rarely expressed in the RNA-seq samples.

Extractor
extract coding exons
as protein sequences

Search

search against
target genome
(tblastn or mmseqs)

GeneModelMapper

build transcript models

Extract
RNA-seq evidence

extract intron &
coverage information
from BAM file(s)

GeMoMa
Annotation Filter

merge & filter
gene/transcript models

RNA-seq reads mapped
to target genome

Target genome

Final gene models

GeMoMaPipeline

Reference genome &
gene models

Annotation
Finalizer

predict UTRs, sort &
rename annotation

Denoise
Introns

remove spurious
introns

External annotation

Annotation
Evidence

add attributes to
existing annotation

Figure 2: GeMoMa workflow. Solid blue items represent input data sets, dashed
blue items are optional inputs, green boxes represent GeMoMa modules, while
grey boxes represent external modules. The GeMoMa Annotation Filter al-
lows to combine predictions from different reference species. RNA-seq data is
optional.

2

1.1 Quick start

We provide three scripts:

1. A test script checking whether GeMoMa runs on your system on some tiny
toy data: tests.sh. Example data can be found in directory tests/gemoma/.

2. An application script allowing to start the complete GeMoMa workflow
with minimal parameter input using the individual modules: run.sh. If
you like to run the workflow with standard parameters and without any
tricks for speed up you can just use this script.

• Without RNA-seq data:

./run.sh <search> <target-genome> <ref-anno> <ref-genome>

<out-dir>

• With RNA-seq data:

./run.sh <search> <target-genome> <ref-anno> <ref-genome>

<out-dir> <lib-type> <mapped-reads>

3. An application script allowing to start the complete GeMoMa workflow
with minimal parameter input using the GeMoMaPipeline module: pipeline.sh.
If you like to run the workflow with standard parameters and without any
tricks for speed up you can just use this script.

• Without RNA-seq data:

./pipeline.sh <search> <target-genome> <ref-anno>

<ref-genome> <threads> <out-dir>

• With RNA-seq data:

./pipeline.sh <search> <target-genome> <ref-anno>

<ref-genome> <threads> <out-dir>

<lib-type> <mapped-reads>

where

1. search is a switch for the search algorithm to be used, either tblastn or
mmseqs

2. target-genome is the genome of the target organism (FastA)

3. ref-anno is the annotation of the reference organism (GFF/GTF)

4. ref-genome is the genome of the reference organism (FastA)

5. threads the number of threads to be used

6. out-dir is the output directory

7. lib-type is the RNA-seq library type
({FR_UNSTRANDED, FR_FIRST_STRAND, FR_SECOND_STRAND})

8. mapped-reads are the mapped RNA-seq reads (SAM/BAM)

3

1.2 Phase 1: Preprocessing RNA-seq data

For this phase, you need RNA-seq data and a reference sequence or assembly
of your target organism. This allows for inferring experimental verified introns
and coverage. In the following command lines ”...“ should be replaced by your
specific parameters.

1. Run your favorite read mapper (e.g. TopHat, . . .) on your RNA-seq data

2. Extract introns (and coverage) running:

java -jar GeMoMa-<version>.jar CLI ERE ...

3. Optionally denoise the extracted introns running:

java -jar GeMoMa-<version>.jar CLI DenoiseIntrons ...

1.3 Phase 2: Prediction candidate transcripts

For this phase, you need at least one reference organism with reference se-
quence/assembly and annotation as well as a reference sequence/assembly for
the target organism. Keep in mind that the outcome of GeMoMa highly de-
pends on the quality of the reference annotation. It is possible to run step 3 to
5 with multiple reference organisms.

3. Extract CDS-parts (and proteins) of the reference organism running:

java -jar GeMoMa-<version>.jar CLI Extractor ...

4. Find homologous parts in the target organism running:

tblastn -outfmt "6 std sallseqid score nident positive gaps

ppos qframe sframe qseq sseq qlen slen salltitles" ...

The output format of tblastn is essential for GeMoMa. Since version 1.6,
we also allow to use mmseqs as search algorithm. Mmseqs is typically
faster than tblastn. For more details we refer to the script run.sh.

5. Find homologous candidate transcripts in the target organism running:

java -jar GeMoMa-<version>.jar CLI GeMoMa ...

Since version 1.4, p=10 and ct=0.4 are new default values.

4

1.4 Phase 3: Aggregate and filter predictions

For this phase, you need only the output of step 5. If you ran the second
phase for multiple reference organisms, the individual predictions can now be
combined in this step.

6. Aggregate predictions running:

java -jar GeMoMa-<version>.jar CLI GAF ...

7. Predict UTRs and rename predictions running:

java -jar GeMoMa-<version>.jar CLI AnnotationFinalizer ...

5

2 Miscellaneous

2.1 Help section and parameter description

If you like to receive more information about the available tools and parameters
please enter

java -jar GeMoMa-<version>.jar CLI

and follow the instructions.

2.2 Check extracted introns

If you like to check whether the extracted introns (cf. ERE) show the expected
distribution of conserved di-nucleotides (cf. canonical splice sites), we have
implemented the module CheckIntrons that can be used as follows:

java -jar GeMoMa-<version>.jar CLI CheckIntrons

2.3 General speed-up

If you

1. like to speed-up the computation and

2. have lots of compute cores,

you might accelerate GeMoMa using the following tricks:

2.3.1 RNA-seq data

If you have a lot of RNA-seq samples you can map them independently. After-
wards, you can run ERE on each of the mapped read data sets (SAM/BAM).
However, if you like to use the results of these runs in GeMoMa it is a bit an-
noying to set a lot of intron and coverage files as parameters. For this reason,
we implemented two helper classes allowing to combine introns and coverage
form independent runs:

java -cp GeMoMa-<version>.jar projects.gemoma.CombineIntronFiles

<output name> <input0> <input1> ...

java -cp GeMoMa-<version>.jar projects.gemoma.CombineCoverageFiles

<output name> <input0> <input1> ...

Instead of listing all files, you can also use wildcards, e.g., ERE/*/*.bam, to
easily combine individuals files.

6

2.3.2 Search and GeMoMa

If you have large data sets, i.e., a large number of lines in the CDS-parts file,
you can split the job in several independent jobs. Splitting the job can be done
using

java -cp GeMoMa-<version>.jar projects.FastaSplitter <CDS-parts>

<numberOfSplits> "_"

This will result in several independent FastA files containing some CDS-
parts. You can run steps 4 and 5 on these individual parts. Finally, you have
to concatenate the resulting predicted annotations, protein, . . . before starting
step 6.

2.4 GeMoMaPipeline

If you only have a compute server and no compute cluster, the general speed-
up described in the last section can directly be addressed without any manual
interplay using the module GeMoMaPipeline. The module runs the complete
pipeline as one job and allows to exploit the complete compute power of a server
using multi-threading. However, this module can only exploit the compute
power of a single server and does not distribute the partial jobs to a compute
cluster.

If you like to receive more information about GeMoMaPipeline and its pa-
rameters please enter

java -jar GeMoMa-<version>.jar GeMoMaPipeline

and follow the instructions.

2.5 Runtime example

To give an impression on the run of GeMoMaPipeline, we have run it with
different number of threads and different search algorithms. As example the
annotation of A. thaliana was predicted based on three reference organisms and
RNA-seq data:

java -jar GeMoMa-1.7.jar GeMoMaPipeline threads=<threads>

tblastn=$tblastn b=$bpath m=$mpath GeMoMa.Score=ReAlign

AnnotationFinalizer.r=NO o=true p=false t=TAIR10_chr_all.fas

s=own i=AL g=Arabidopsis_lyrata.v.1.0.31.dna.genome.fa

a=Arabidopsis_lyrata.v.1.0.31.chr.gff3

s=own i=BO g=Boleraceacapitata_446_v1.0.fa

a=Boleraceacapitata_446_v1.0.gene_exons.gff3

s=own i=BS g=Bstricta_278_v1.fa

a=Bstricta_278_v1.2.gene_exons.gff3

r=MAPPED ERE.m=AlignedSorted-2pass.bam

7

threads tblastn 2.5.0+ tblastn 2.10.1+ mmseqs v11

1 34:54:45 NA 07:38:36
4 09:14:19 NA 02:22:39

16 02:41:48 63:13:09 00:48:32
64 00:58:23 18:53:00 00:29:00

Table 1: Runtime comparison of the GeMoMaPipeline. The runtime is given
using the format hh:mm:ss. The prediction accuracy was identical for the dif-
ferent blast versions and very similar for mmseqs.

Runtime was measured with the Linux command time. The runtime issue
for tblastn version 2.6.0 until 2.10.1 has been reported to NCBI (TRACK-
ING:000412000006306). NCBI could reproduce the problem and will hopefully
fix it soon.

Of course, the runtime also depends on the reference organisms and the size
of the target genome.

2.6 Genome-wide vs. specific genes

By default, GeMoMa tries to make predictions for all CDS of the reference
organism in the target organism. Hence, we call this a genome-wide approach.
Additionally, Extractor and GeMoMa have an option for filtering based on a
list of some reference CDS (cf. parameter selected). This approach allows to
further speed up the predictions especially if one is interested only in a certain
part of the annotation.

2.7 Add attributes

Sometimes it might be beneficial to add attributes to the structural annota-
tion, e.g., you could predict functional annotation with InterProScan and might
use them in GAF or display them in genome browsers like IGV or WebApollo.
Hence, GeMoMa provides an additional module called AddAttribute which al-
lows to add attributes to a structural annotation using an additional table.

java -jar GeMoMa-<version>.jar CLI AddAttribute ...

2.8 Synteny

Comparing different genome assemblies or organisms, synteny is sometimes of
interest. There are specialized programs that compute synteny by comparing
chromosomes or contigs of different species. These programs need to do some
kind of alignment or mapping. As GeMoMa computes alignments of proteins
from a reference organism to a target organism, these gene predictions can be
used to infer synteny on a gene level with almost no additional runtime. Since
version 1.7, GeMoMa includes a module called SyntenyChecker and an R script
(see below).

8

java -jar GeMoMa-<version>.jar CLI SyntenyChecker ...

The result of SyntenyChecker can be visualized using the R script synplot.r.
An example how to use both, SyntenyChecker and synplot.r is given at the end
of run.sh. However, as the toy data is too small for synteny computation, it is
only given in the comments.

2.9 Galaxy integration

GeMoMa provides a command line interface as well as everything to be inte-
grated in your local Galaxy instance. For creating the XML files that are needed
for integration into Galaxy, just run:

createGalaxyIntegration.sh <version>

Alternatively, you can run the individual commands on your own using the
command line

java -jar GeMoMa-<version>.jar --create

If you like to modify some VM arguments for the java calls made by Galaxy
you can alter them for each sub-tool individually. If you like to allow GeMoMa
to allocate at most 40GB of RAM, you may do so by running

java -jar GeMoMa-<version>.jar --create GeMoMa -Xmx40g

to create the corresponding XML integration for GeMoMa.

3 Reference, questions and comments

If you use GeMoMa please cite:

Using intron position conservation for homology-based gene prediction.
J. Keilwagen, M. Wenk, J. L. Erickson, M. H. Schattat, J. Grau, and F. Har-
tung.
Nucleic Acids Research, 2016. doi: 10.1093/nar/gkw092

Combining RNA-seq data and homology-based gene prediction for plants, ani-
mals and fungi.
J. Keilwagen, F. Hartung, M. Paulini, S. O. Twardziok, and J. Grau.
BMC Bioinformatics, 2018. doi: 10.1186/s12859-018-2203-5

FAQs, complete parameter lists, release notes, . . . can be found on the home-
page: http://www.jstacs.de/index.php/GeMoMa

For further questions or comments, please contact:
jens.keilwagen@julius-kuehn.de

9

https://doi.org/10.1093/nar/gkw092
https://doi.org/10.1186/s12859-018-2203-5
http://www.jstacs.de/index.php/GeMoMa
mailto:jens.keilwagen@julius-kuehn.de?subject=GeMoMa manual

	GeMoMa in a nutshell
	Quick start
	Phase 1: Preprocessing RNA-seq data
	Phase 2: Prediction candidate transcripts
	Phase 3: Aggregate and filter predictions

	Miscellaneous
	Help section and parameter description
	Check extracted introns
	General speed-up
	RNA-seq data
	Search and GeMoMa

	GeMoMaPipeline
	Runtime example
	Genome-wide vs. specific genes
	Add attributes
	Synteny
	Galaxy integration

	Reference, questions and comments

